Math, asked by ss7103093, 10 months ago

if alpha and 1/alpha are the zeroes of 6x^2+11x-(k-2).find the value of k?

Answers

Answered by Mohanbalu
10

Step-by-step explanation:

P(X)=6x²+11x-(k-2)

I AM WRITING ALPHA =@. BECAUSE THERE IS NO ALPHA.SO,U CAN WRITE ALPHA VALUE

6(@)²+11X-K+2

6@²+11@-K+2

6@²+11@+2=K

6@²-1@-12@+2

1(6@+1)-2(6@+1)

1-2(6@+1)

@=1/6

Answered by amitkumar44481
126

AnsWer :

k = -4.

Given :

  • Zeros above polynomial be alpha and 1/alpha.
  • polynomial 6x² + 11x - (k-2).

Concepts Required :

 \tt\blacksquare \: Sum \: of \: Zeros  \\   \tt\alpha . \beta  =  \frac{-b}{a}  =  \frac{Coefficient \: of \: x}{coefficient \: of \:  {x}^{2} }

 \tt\blacksquare \: product \: of \: zeros  \\   \tt\alpha . \beta  =  \frac{c}{a}  =  \frac{constant \: term}{coefficient \: of \:  {x}^{2} }

Solution :

We have,

 \tt \dagger \:  \:  \: 6 {x}^{2}  + 11x - (k - 2).

So,

 \tt\longmapsto  \alpha  \beta  =  \frac{c}{a}

\rule{90}2

Here,

  • alpha = alpha.
  • beta = 1/ alpha.

 \tt \longmapsto  \alpha . \frac{1}{  \alpha }  =  \frac{ - (k - 2)}{6}

 \tt\longmapsto  1 =  \frac{ - k + 2}{6}

 \tt\longmapsto  6  - 2=  - k

 \tt \longmapsto   - k = 4

 \tt\longmapsto  k =  - 4.

Therefore, the value of k be -4.

Similar questions
Math, 5 months ago