Math, asked by babitabaliyan078, 10 months ago

If alpha and beeta are the zeroes of (ax^2+bx+c) evaluate
1/(a*alpha+b) +1/(a*beeta+b)

Answers

Answered by niharikam54
2

Step-by-step explanation:

hope this helps you this is ur answer

Attachments:
Answered by Cosmique
5

QUESTION

If α and  β are the zeroes of  ax²+bx+c  .  evaluate

\frac{1}{(a*\alpha+b) } + \frac{1}{(a*\beta+b) }  .

SOLUTION

Since α and  β  are zeroes of the given quadratic polynomial

therefore

α+β = -b/a

αβ = c/a

We have,

\frac{1}{(a*\alpha+b) } +\frac{1}{(a*\beta+b)} \\\\( taking  LCM )\\\\\frac{(a*\beta+b)+(a*\alpha+b)}{(a*\alpha+b)(a*\beta+b) }\\\\\frac{(a*\alpha+a*\beta +2b) }{(a^{2}\alpha\beta + ab\alpha+ab\beta+b^{2} )    }\\\\\frac{a(\alpha+\beta )+2b }{a^{2}\alpha\beta+ab(\alpha+\beta)+b^{2} } \\\\( putting \\\alpha+\beta = -b/a   \\and \\  \alpha\beta = c/a)\\\\ \frac{a(\frac{-b}{a})+2b }{a^{2}(\frac{c}{a})+ab(\frac{-b}{a} )+b^{2}}\\\\\frac{-b+2b}{ac-b^{2}+b^{2} }\\\\\frac{b}{ac}

ON EVALUATING WE WILL GET  (b/ac) .

so the answer will be

b/ac

Similar questions