Math, asked by babitabaliyan078, 10 months ago

if alpha and beeta are the zeroes of (ax^2+bx+c)evaluate alpha minus beeta​

Answers

Answered by Anonymous
3

=============================

HOPE IT HELPS YOU SEE THE ATTACHMENT FOR FURTHER INFORMATION......

REGARDS.....

_ADDY_☺☺

Attachments:
Answered by Anonymous
7

Answer :-

α - β = √(b² - 4ac) / a

Solution :-

ax² + bx + c

Let α, β be the zeroes of the polynomial

Sum of zeroes = α + β = - b/a

Product of zeroes = αβ = - b/a

By using identity (α - β)² = (α + β)² - 4αβ

 \implies ( \alpha  -  \beta )^{2}  = ( \alpha  +  \beta )^{2}  - 4 \alpha  \beta

Substituting the values

 \implies ( \alpha  -  \beta )^{2}  =  \bigg(  - \dfrac{b}{a}  \bigg)^{2}  - 4  \bigg( \dfrac{c}{a}  \bigg)

 \implies ( \alpha  -  \beta )^{2}  =  \dfrac{( - b)^{2} }{a^{2} } - \dfrac{4c}{a}

 \implies ( \alpha  -  \beta )^{2}  =  \dfrac{b^{2} }{a^{2} } - \dfrac{4c}{a}

Taking LCM

 \implies ( \alpha  -  \beta )^{2}  =  \dfrac{b^{2}  -  4ac}{a^{2} }

Taking Square root on both sides

 \implies \sqrt{( \alpha  -  \beta )^{2}}  =   \sqrt{ \dfrac{b^{2}  -  4ac}{a^{2} } }

 \implies  \alpha  -  \beta  =    \dfrac{ \sqrt{ b^{2}  -  4ac}}{ \sqrt{ {a}^{2} }  }

 \implies  \alpha  -  \beta  =    \dfrac{ \sqrt{ b^{2}  -  4ac}}{a }

Therefore the value of α - β is √(b² - 4ac) / a

Similar questions