Math, asked by pdcpatikuttamikutc, 1 year ago

if alpha and beeta are the zeroes of the polynomial x2+4x+3,from the polynomial whose zeroes are 1+beeta/alphaand 1+alpha/beeta

Answers

Answered by Mathexpert
1
Given polynomial is x²+4x+3
Sum of the roots, α + β = -b/a = -4
Product of the roots, 
αβ = c/a = 3

Now,

Sum of roots of  \frac{1+ \beta }{ \alpha }, \frac{1+ \alpha }{ \beta }

 \frac{1+  \beta }{ \alpha } +  \frac{1+ \alpha }{ \beta }

 \frac{ \beta + \beta ^2+ \alpha + \alpha ^2}{ \alpha  \beta }

 \frac{ \alpha ^2+ \beta ^2+ \alpha + \beta }{ \alpha  \beta }

 \frac{( \alpha + \beta )^2-2 \alpha  \beta +( \alpha + \beta }{ \alpha  \beta }  

 \frac{(-4)^2-2(3)+(-4)}{3}

 \frac{16 - 6 - 4}{3}

= 2

Product of the roots of  \frac{1+ \beta }{ \alpha } , \frac{1+ \alpha }{ \beta }

 \frac{1+ \alpha  \beta + \alpha + \beta }{ \alpha  \beta }

 \frac{1+3-4}{3}

= 0

The polynomial is x
² - (sum of the roots)x + (Product of the roots)

⇒ x² - 2x + 0

⇒ x² - 2x 
Similar questions