Math, asked by ta1n4guuodedashrajil, 1 year ago

If alpha and beeta are the zeros of the quadratic polynomial f(x)=kx 2 +2x-15 such that alpha 2 +beeta 2 =34,then find the value of k

Answers

Answered by Mathexpert
36
f(x) = kx²+2x-15
Sum of the roots, α + β =  \frac{-b}{a}

α + β =  \frac{-2}{k}  

The product of the roots, αβ =  \frac{c}{a}
αβ =  \frac{-15}{k}

Given that

α²+β² = 34
         
(α+β)² - 2αβ = 34

( \frac{-2}{k})^2 - 2( \frac{-15}{k}) = 34

 \frac{4}{k^2} +  \frac{30}{k}  = 34
Multiplying both sides by 

4 + 30k = 34k²

34k² - 30k - 4 = 0

17k² - 15k - 2 = 0

(k-1)(17k+2) = 0

k = 1 or -17/2
Similar questions