Math, asked by Anbhu69, 10 months ago

if alpha and beta are 2 zeroes of the polynomial. 3x^2-17x+24.find alpha square+beta square and alpha cube+beta cube and 1 by alpha and 1 by beta​

Answers

Answered by MaheswariS
4

\underline{\textsf{Given:}}

\mathsf{\alpha\;and\;\beta\;are\;zeros\;of\;3x^2-17x+24}

\underline{\textsf{To find:}}

\textsf{The value of}

\mathsf{1.\alpha^2+\beta^2}

\mathsf{2.\alpha^3+\beta^3}

\mathsf{3.\dfrac{1}{\alpha}+\dfrac{1}{\beta}}

\underline{\textsf{Solution:}}

\mathsf{Consider,}

\mathsf{3x^2-17x+24}

\mathsf{\alpha+\beta=\dfrac{17}{3}}

\mathsf{\alpha\beta=\dfrac{24}{3}=8}

\mathsf{Now}

\mathsf{1.\alpha^2+\beta^2}

\mathsf{=(\alpha+\beta)^2-2\alpha\beta}

\mathsf{=\left(\dfrac{17}{3}\right)^2-2(8)}

\mathsf{=\dfrac{289}{9}-16}

\mathsf{=\dfrac{289-144}{9}}

\mathsf{=\dfrac{145}{9}}

\implies\boxed{\mathsf{\alpha^2+\beta^2=\dfrac{145}{9}}}

\mathsf{2.\alpha^3+\beta^3}

\mathsf{=(\alpha+\beta)^3-3\alpha\beta(\alpha+\beta)}

\mathsf{=\left(\dfrac{17}{3}\right)^3-3(8)\left(\dfrac{17}{3}\right)}

\mathsf{=\left(\dfrac{17}{3}\right)^3-8(17)}

\mathsf{=\dfrac{4913}{27}-136}

\mathsf{=\dfrac{4913-3672}{27}}

\mathsf{=\dfrac{1241}{27}}

\implies\boxed{\mathsf{\alpha^3+\beta^3=\dfrac{1241}{27}}}

\mathsf{3.\dfrac{1}{\alpha}+\dfrac{1}{\beta}}

\mathsf{=\dfrac{\alpha+\beta}{\alpha\beta}}

\mathsf{=\dfrac{\dfrac{17}{3}}{8}}

\mathsf{=\dfrac{17}{24}}

\implies\boxed{\mathsf{\dfrac{1}{\alpha}+\dfrac{1}{\beta}=\dfrac{17}{24}}}

\underline{\textsf{Find more:}}

1)If alpha and beta are zeroes of quadratic polynomial x2 -(k+6x)+2(2k-1) 

find k if alpha +beta=1/2alpha beta  

2)If alpha and beta are zeroes of x2-6x+a, find the value of a if 3alpha+2beta=20

https://brainly.in/question/16419985

3)If α and β are the zeroes of the polynomial

xsquare+ x – 1, the evaluate α + β + αβ

https://brainly.in/question/17511372

Similar questions