Math, asked by patelanshul252, 9 months ago

if alpha and beta are multiple zeroes of 6x^2-5x-k and alpha-beta=7/6 so find the value of k​

Answers

Answered by Anonymous
132

\large{\underline{\underline{\mathfrak{\green{\sf{QUESTION:-}}}}}}.

  • if \alpha\:and\:\beta are multiple zeroes of \:(6x^2-5x-k) and \alpha\:-\:\beta\:=\:\frac{7}{6}so find the value of k

\large{\underline{\underline{\mathfrak{\green{\sf{Sulution:-}}}}}}.

\large{\underline{\underline{\mathfrak{\sf{Given\:Here:-}}}}}.

  • Equation is \:(6x^2-5x-k)\:=\:0

  • \alpha\:and\:\beta\:are\:zeros\:of\:this\:equation

  • \alpha\:-\:\beta\:=\frac{7}{6}...(1)

\large{\underline{\underline{\mathfrak{\sf{Find\:Here:-}}}}}.

  • Value of k

\large{\underline{\underline{\mathfrak{\sf{Explanation:-}}}}}.

We know ,

\bold{\boxed{\boxed{\:Sum\:of\:Zeros\:=\frac{-(Coefficient\:of\:x)}{(Coefficient\:of\:x^2)}}}}

So,

\implies\:(\alpha\:+\beta)\:=\frac{-(-5)}{6}

\implies\:(\alpha\:+\beta)\:=\frac{5}{6}...(2)

Addition of equation (1) and (2) ,

We find here,

\implies\:2\alpha\:=\frac{7}{6}\:+\frac{5}{6}

\implies\:2\alpha\:=\frac{(7+5)}{6}

\implies\:2\alpha\:=\frac{\cancel{12}}{\cancel{6}}

\bold{\boxed{\boxed{\:\alpha\:=\:1}}}

Keep value of \alpha\:=\:1 in (2)

we find here,

\implies\:(1\:+\beta)\:=\frac{5}{6}

\implies\:(\beta)\:=\frac{5}{6}\:-\:1

\implies\:(\beta)\:=\frac{(5-6)}{6}

\bold{\boxed{\boxed{\:(\beta)\:=\frac{-1}{6}}}}

___________________

Again, We know ,

\bold{\boxed{\boxed{\:Product\:of\:Zeros\:=\frac{(Constant\:part)}{(Coefficient\:of\:x^2)}}}}

\implies\:(\alpha\times\beta)\:=\frac{(-k)}{6}

Keep value of \alpha\:and\:\beta

\implies\:(1\:\times\frac{-1}{6})\:=\frac{k}{6}

\implies\:\frac{k}{6}\:=\frac{-1}{6}

\implies\:(k)\:=\frac{\cancel{-6}}{\cancel{6}}

\bold{\boxed{\boxed{\:(k)\:=\:-1}}}

_____________________

\large{\underline{\underline{\mathfrak{\green{\sf{Answer:-}}}}}}.

  • Value of k = -1

___________________

Similar questions