Math, asked by ektarai1367, 1 year ago

If alpha and beta are root of equation 5x2-7x+1=0 find value of 1/ alpha + 1/beta

Answers

Answered by sanjeevk28012
17

Given :

The quadratic equation is   5 x² - 7 x + 1 = 0

alpha and beta are roots of this equation

To Find :

The value of   \dfrac{1}{\alpha }  +  \dfrac{1}{\beta }

Solution :

From standard quadratic equation

i.e    a x² + b x + c = 0

The sum of its roots = \dfrac{-b}{a}

The products of its roots = \dfrac{c}{a}

Now, compare given equation with standard equation

 As α , β is the roots of   5 x² - 7 x + 1 = 0

So,  sum of roots = α + β = \dfrac{-(-7)}{5} = \dfrac{7}{5}           ...........1

And products of roots = α. β = \dfrac{1}{5}                   .................2

Again

The value of \dfrac{1}{\alpha }  +  \dfrac{1}{\beta }  =  \dfrac{\alpha +\beta  }{\alpha \beta }

                                  = \dfrac{\dfrac{7}{5} }{\dfrac{1}{5} }

                                  = \dfrac{7\times 5}{1\times 5}  = 7

So, The value of \dfrac{1}{\alpha }  +  \dfrac{1}{\beta }  = 7

Hence, The value of \dfrac{1}{\alpha }  +  \dfrac{1}{\beta }  is 7  Answer

Similar questions