Math, asked by ssgk296niharika, 1 month ago

if alpha and beta are roots of a cos theta + b sin theta=c,show that cos(alpha+beta)=a^2-b^2/a^2+b^2.

Answers

Answered by adbhuvanvignesh
1

Answer:

Step-by-step explanation:

Answer

It is given that α and β are distinct roots of acosx+bsinx=c.

Therefore,

acosα+bsinα=c and acosβ+bsinβ=c

⇒(acosα+bsinα)−(acosβ+bsinβ)=c−c

⇒a(cosα−cosβ)+b(sinα−sinβ)=0

⇒−2asin  

2

α+β

​  

sin  

2

α−β

​  

+2bsin  

2

α−β

​  

cos  

2

α+β

​  

=0

⇒2asin  

2

α+β

​  

sin  

2

α−β

​  

=2bsin  

2

α−β

​  

cos  

2

α+β

​  

 

⇒tan  

2

α+β

​  

=  

a

b

​  

 

Therefore,

sin(α+β)=  

1+tan  

2

 

2

α+β

​  

 

2tan  

2

α+β

​  

 

​  

 

                    =  

1+  

a  

2

 

b  

2

 

​  

 

a

2b

​  

 

​  

 

                    =  

a  

2

+b  

2

 

2ab

Similar questions