Math, asked by inesh123, 10 months ago

if alpha and beta are roots of ax² + bx+c =0 then 1/alpha²+ 1/beta² =​

Attachments:

Answers

Answered by Anonymous
7

\bf{\Huge{\boxed{\rm{\pink{ANSWER\::}}}}}

\bf{\Large{\underline{\bf{Given\::}}}}

If α & β are roots of ax² + bx + c = 0.

\bf{\Large{\underline{\bf{To\:\:find\::}}}}

\bf{\Large{\sf{\frac{1 }{\alpha^{2}   } +\frac{1}{\beta ^{2} } ? }}}

\bf{\Large{\underline{\tt{\red{Explanation\::}}}}}

We have, ax² + bx + c = 0

\bf{\Large{\boxed{\sf{\green{Sum\:of\:roots\::}}}}}

\mapsto\rm{\alpha +\beta \:=\:\frac{Coefficient\:of\:x}{Coefficient\:of\:x^{2} } }

\mapsto\rm{\alpha +\beta \:=\:-\frac{b}{a} }

\bf{\Large{\boxed{\sf{\green{Product\:of\:roots\::}}}}}

\mapsto\rm{\alpha \beta \:=\:\frac{Constant\:term}{Coefficient\:of\:x^{2} } }

\mapsto\rm{\alpha \beta \:=\:\frac{c}{a} }

\leadsto\sf{Quadratic\:polynomial\:g(x)=\:x^{2} -(\alpha +\beta )^{2} +\alpha \beta }

Now,

\longmapsto\tt{\frac{1}{\alpha ^{2} } +\frac{1}{\beta ^{2} } =x^{2} -(\frac{1}{\alpha ^{2} } +\frac{1}{\beta ^{2} } )x+\frac{1}{\alpha ^{2} } \:\frac{1}{\beta ^{2} } =0}

\longmapsto\tt{x^{2} -(\frac{\alpha ^{2} +\beta ^{2} }{\alpha ^{2} \beta ^{2} } )x+\frac{1}{(\alpha\beta )^{2}  } =0}

\longmapsto\tt{x^{2} -[\frac{(\alpha+\beta)^{2} -2\alpha \beta  }{(\alpha \beta )^{2} } ]x+\frac{1}{(\alpha \beta)^{2}  } =0}

\longmapsto\tt{x^{2} -(\frac{\frac{b^{2} }{\cancel{a^{2}} } -2*\frac{c}{a}  }{\frac{c^{2} }{\cancel{a^{2}} } } )x+\frac{a^{2} }{c^{2} } =0}

\longmapsto\tt{x^{2} -(\frac{b^{2} -2ac}{c^{2} } )x+\frac{a^{2} }{c^{2} } =0}

\longmapsto\sf{c^{2} x^{2} -(b^{2} -2ac)x\:+a^{2} =0}

Thus,

\bf{\Large{\boxed{\tt{c^{2} x^{2} -(b^{2} -2ac)x\:+a^{2} =0}}}}}

Answered by Anonymous
109

If α & β are roots of ax² + bx + c = 0

\tt\green{To\:\:find\::}

\tt{\frac{1 }{\alpha^{2} } +\frac{1}{\beta ^{2} }  }

\tt\green{Explanation\::}

We have, ax² + bx + c = 0

So the Sum of roots is

{\alpha +\beta \:=\:\frac{Coefficient\:of\:x}{Coefficient\:of\:x^{2} } }

{\alpha +\beta \:=\:-\frac{b}{a} }

\bf{\Large{\boxed{\tt{\blue{Product\:of\:roots\::}}}}}

{\alpha \beta \:=\:\frac{Constant\:term}{Coefficient\:of\:x^{2} } }

{\alpha \beta \:=\:\frac{c}{a} }

\tt{Quadratic\:polynomial\:g(x)=\:x^{2} -(\alpha +\beta )^{2} +\alpha \beta }

__________________________

\tt{\frac{1}{\alpha ^{2} } +\frac{1}{\beta ^{2} } =x^{2} -(\frac{1}{\alpha ^{2} } +\frac{1}{\beta ^{2} } )x+\frac{1}{\alpha ^{2} } \:\frac{1}{\beta ^{2} } =0}

\tt{x^{2} -[\frac{(\alpha+\beta)^{2} -2\alpha \beta }{(\alpha \beta )^{2} } ]x+\frac{1}{(\alpha \beta)^{2} } =0}

\tt{x^{2} -(\frac{\frac{b^{2} }{\cancel{a^{2}} } -2*\frac{c}{a} }{\frac{c^{2} }{\cancel{a^{2}} } } )x+\frac{a^{2} }{c^{2} } =0}

\tt{x^{2} -(\frac{b^{2} -2ac}{c^{2} } )x+\frac{a^{2} }{c^{2} } =0}

\tt\green{c^{2} x^{2} -(b^{2} -2ac)x\:+a^{2} =0}

Similar questions