if alpha and beta are roots of equation ax^2+bx^+c=0 then find alpha minus beta or say alpha minus beta formula
Answers
Answered by
1
Alpha - beta = - b/c
crazyjohnny28:
sorry its not the ans but thx for giving a fast reply
Answered by
1
Here is your answer,
![{( \alpha - \beta )}^{2} = { \alpha }^{2} + { \beta }^{2} - 2 \alpha \beta \\ \alpha - \beta = \sqrt{ { \alpha }^{2} + { \beta }^{2} - 2 \alpha \beta } \\ \alpha - \beta = \sqrt{ {( \alpha + \beta )}^{2} - 2 \alpha \beta - 2 \alpha \beta } \\ \alpha - \beta = \sqrt{( \alpha + \beta )( \alpha + \beta ) - 4 \alpha \beta } {( \alpha - \beta )}^{2} = { \alpha }^{2} + { \beta }^{2} - 2 \alpha \beta \\ \alpha - \beta = \sqrt{ { \alpha }^{2} + { \beta }^{2} - 2 \alpha \beta } \\ \alpha - \beta = \sqrt{ {( \alpha + \beta )}^{2} - 2 \alpha \beta - 2 \alpha \beta } \\ \alpha - \beta = \sqrt{( \alpha + \beta )( \alpha + \beta ) - 4 \alpha \beta }](https://tex.z-dn.net/?f=+%7B%28+%5Calpha+-+%5Cbeta+%29%7D%5E%7B2%7D+%3D+%7B+%5Calpha+%7D%5E%7B2%7D+%2B+%7B+%5Cbeta+%7D%5E%7B2%7D+-+2+%5Calpha+%5Cbeta+%5C%5C+%5Calpha+-+%5Cbeta+%3D+%5Csqrt%7B+%7B+%5Calpha+%7D%5E%7B2%7D+%2B+%7B+%5Cbeta+%7D%5E%7B2%7D+-+2+%5Calpha+%5Cbeta+%7D+%5C%5C+%5Calpha+-+%5Cbeta+%3D+%5Csqrt%7B+%7B%28+%5Calpha+%2B+%5Cbeta+%29%7D%5E%7B2%7D+-+2+%5Calpha+%5Cbeta+-+2+%5Calpha+%5Cbeta+%7D+%5C%5C+%5Calpha+-+%5Cbeta+%3D+%5Csqrt%7B%28+%5Calpha+%2B+%5Cbeta+%29%28+%5Calpha+%2B+%5Cbeta+%29+-+4+%5Calpha+%5Cbeta+%7D+)
Now, if you have to find the value of Alpha minus beta you need to only find the value of alpha + beta and alpha beta.
Now, if you have to find the value of Alpha minus beta you need to only find the value of alpha + beta and alpha beta.
Similar questions