If alpha and beta are roots of equation ax^2+bx+c =0then find the value of
Attachments:
Answers
Answered by
1
Answer:
-2/a
Step-by-step explanation:
α and β are roots of equation
ax²+bx+c =0
so α+β=-b/a
αβ=c/a
======================
hence
β/(aα+b) +α/(aβ+b)
=[ β(aβ+b)+α(aα+b) ] / (aα+b)(aβ+b)
= ( aβ²+bβ+aα²+bα) / (a²αβ+abα+abβ+b²)
=[ a(α²+β²) +b(α+β) ]/ [( a²αβ+ab(α+β) +b² ]
=[ a { (α+β)²-2αβ} +b(α+β) ] / [( a²αβ+ab(α+β) +b² ]
===============
putting values we get
={ a( b²/a²-2c/a) +b*-b/a] /(a²*c/a+ab*-b/a+b²)
={ b²/a-2c-b²/a)/(ca-b²+b²)
=-2c/ca
=-2/a
Please comment if the answer is correct
Similar questions