Math, asked by thirumalaradhakrisna, 1 month ago

if alpha and beta are roots of equation x2+5x+5=0 then write quadratic equation whose roots are alpha+beta/alphabeta​

Answers

Answered by velpulaaneesh123
1

Answer:

x^2 + 3x + 1 = 0

Step-by-step explanation:

The quadratic equation whose roots are α + 1, β + 1 is x^2 + 3x + 1 = 0

  • Given equation is

        x^2 +5x +5=0 ----------------- eq1

  • comparing with ax^2 + bx +c = 0 we get

           a = 1, b = 5, c = 5

  • Roots of (1) are α, β

        sum of roots = α + β =\frac{-b}{a} = \frac{-5}{1} = -5 {\boxed {\boxed{-5{ {\ }}}}}

        product of roots = αβ = \frac{c}{a}  = \frac{5}{1} =5  {\boxed {\boxed{5{ {\ }}}}}

  • Quadratic equation with roots α + 1, β + 1 is given by

         

            x^{2} - (sum of roots)x + (product of roots) = 0

            x^{2} - (α + 1 + β + 1)x + (α+1)(β+1) = 0

             x^{2}- (α + β + 2)x + αβ + α + β + 1 = 0

             x^{2}- (-5+2)x + 5 + (-5) + 1 = 0       [from (2) and (3)]

             x^{2}- (-3)x + 5 - 5 + 1 = 0

            x^{2} + 3x + 1 = 0

Similar questions