Math, asked by ramyasri4242, 11 months ago

If alpha and beta are roots of the equation 2x^2-(p+1)x+(p-1)=0 and alpha-beta =alpha×beta,then the value of p is a) 3 b)-2 c)1 d)2

Answers

Answered by CharmingPrince
15

\huge{\bigstar}{ \green{ \mathfrak{ \underline{ \underline{Question}}}}}{\bigstar}

■☆□☆□☆□☆□☆□☆□☆□☆□☆■

If \: \alpha \:and\: \beta\: are \:roots\: of\: the\: equation\\ 2x^2-(p+1)x+(p-1)=0 \:and\\ \alpha - \beta =\alpha \beta, \:then \:the \:value\: of\: p \:is:&lt;ol type ="a"&gt;</p><p>&lt;li&gt;3</p><p>&lt;li&gt;-2&lt;li&gt;1&lt;li&gt;2&lt;/ol&gt;

■☆□☆□☆□☆□☆□☆□☆□☆□☆■

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

\huge{\bigstar}{ \green{ \mathfrak{ \underline{ \underline{Answer}}}}}{\bigstar}

\boxed{\red{\bold{Sum \:of \:zeroes:}}}

\purple{\implies \alpha + \beta = \displaystyle{\frac{-b}{a}}}

\purple{\implies} \alpha + \beta = \displaystyle{\frac{-[-(p+1)]}{2}}

\purple{\implies} \alpha + \beta = \displaystyle{\frac{p+1}{2}}

\boxed{\red{\bold{Product \: of \: zeroes:}}}

\purple{\implies \alpha \beta = \displaystyle{\frac{c}{a}}}

\purple{\implies}\alpha \beta = \displaystyle{\frac{p-1}{2}}

\boxed{\red{\bold{Difference \: of\: zeroes:}}}

\blue{\implies \alpha - \beta = \displaystyle \sqrt{(\alpha + \beta)^2 - 4 \alpha \beta}}

\blue{\implies}\alpha - \beta = \displaystyle \sqrt{\left( \displaystyle{\frac{p+1}{2}} \right)^2 - 4 × \frac{p-1}{2}}

\blue{\implies}\alpha - \beta =\displaystyle \sqrt{\displaystyle{\frac{p^2 +2p +1}{4}} - \frac{4p-4}{2}}

\blue{\implies}\alpha - \beta = \displaystyle \sqrt{\displaystyle{\frac{p^2 + 2p + 1 - 8p + 8}{4}}}

\blue{\implies}\alpha - \beta = \displaystyle \sqrt{\displaystyle{\frac{p^2 - 6p+9}{4}}}

\blue{\implies}\alpha - \beta = \pm \displaystyle{\frac{p-3}{2}}

\boxed{\red{\bold{Given\: relation:}}}

\green{\alpha - \beta = \alpha \beta}

\green{\boxed{Putting\: \alpha - \beta = +\left( \displaystyle{\frac{p-3}{2}} \right)}}

\green{\implies}\displaystyle{\frac{p-3}{2}} = \frac{p-1}{2}

\green{\implies}It\: is\; not \:possible

\green{\boxed{So \:taking\: \alpha - \beta = \displaystyle{\frac{-\left( p-3 \right)}{2}}}}

\green{\implies}\displaystyle{\frac{-p+3}{2}} = \frac{p-1}{2}

\green{\implies}-p+3 = p-1

\green{\implies}2p = 4

\green{\boxed{\bold{p=2}}}

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

Similar questions