Math, asked by sumitdhingra52851, 1 month ago

If alpha and beta are roots of x²-5x+6=0.construct a quadratic equation whose roots are 1÷alpha and 1÷beta

Answers

Answered by mathdude500
223

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\: \alpha , \beta  \: are \: roots \: of \:  {x}^{2} - 5x + 6 = 0

We know that,

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\bf\implies \: \alpha  +  \beta  =  - \dfrac{( - 5)}{1}  = 5

and

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\bf\implies \: \alpha  \beta  = \dfrac{6}{1}  = 6

Now,

We have to form a quadratic equation whose roots are

 \:  \sf \: \dfrac{1}{ \alpha } ,\dfrac{1}{ \beta }

Consider,

Sum of roots, S

 \rm \:  =  \:  \: \dfrac{1}{ \alpha }  + \dfrac{1}{ \beta }

 \rm \:  =  \:  \: \dfrac{ \alpha  +  \beta }{ \alpha  \beta }

\rm \:  =  \: \dfrac{5}{6}

\rm :\implies\: \boxed{ \bf{S =  \frac{5}{6}}}

Now,

Product of roots, P

 \rm \:  =  \:  \: \dfrac{1}{ \alpha }  \times  \dfrac{1}{ \beta }

\rm \:  =  \: \dfrac{1}{ \alpha  \beta }

\rm \:  =  \: \dfrac{1}{6}

\rm :\implies\: \boxed{ \bf{P =  \frac{1}{6}}}

Now,

Required quadratic equation is given by

\rm :\longmapsto\: {x}^{2} - Sx + P = 0

\rm :\longmapsto\: {x}^{2} - \dfrac{5}{6} x + \dfrac{1}{6}  = 0

\bf\implies \: {6x}^{2} - 5x + 1 = 0

Remark :-

Short cut trick :-

\rm :\longmapsto\: \alpha , \beta  \: are \: roots \: of \:  {ax}^{2}  + bx + c= 0 \: then \:

 \rm \: quadratic \: equation \: whose \: roots \: are \: \dfrac{1}{ \alpha },\dfrac{1}{ \beta }  \: is \: given \: by\:

 \rm \:  {cx}^{2}  + bx + a = 0

Answered by SparklingBoy
313

-------------------------------

▪ Given :-

  \large\sf{\alpha \: and \:   \beta \:  are \: the \: zeros \: of \: eq {}^{n} }  :  \\   \bf{x}^{2}  - 5x + 6 = 0

▪ To Find :-

  \large\sf{A  \: Quadratic \:  Eq {}^{n}   \: whose \: zeros \: are}:  \\  \frac{1}{ \alpha } \:   \bf and \:  \frac{1}{ \beta }

-------------------------------

▪ Concept To Mind :-

 \large \pmb{\mathfrak{For  \:  \:  \text{A}  \: \:  Qudratic \:  \:  Eq^n  \: \:  of \:  \:  the \:  \:  Form}} :

 \Large\bf a {x}^{2}  + bx + c

 \large\sf{Sum  \: of  \: Zeros  =   - \dfrac{b}{a} } \\  \\ \large \sf{ Product \:  of \:  Zeros =  \frac{c}{a} }

-------------------------------

▪ Solution :-

\large \sf As  \: \mathtt{\alpha \: and \:   \beta \:  are \: the \: zeros \: of \: eq {}^{n} }  :  \\   \bf{x}^{2}  - 5x + 6 = 0 \\  \\ \Large   : \longmapsto \:  \alpha  +  \beta  =   5 \:  \:  \:  \:  -  -  -  - (1)

 \huge \pmb{ \mathfrak{ \text{A}lso,}}

 \Large\alpha  \beta  = 6 \:  \:  \:  \:  -  -  -  - (2)

For The Quadratic Equation whose Zeros are  \dfrac{1}{ \alpha }  \:  \bold{and} \:  \dfrac{1}{ \beta }

 \sf Sum \:  of \:  Zeros  =  S =  \dfrac{1}{ \alpha }  +  \dfrac{1}{ \beta }  \\  \\ \large \sf =  \frac{ \beta  +  \alpha }{ \alpha \beta  }  \\  \\  \Large\pmb{ \boxed{ \boxed{ S =  \frac{5}{6} }}}

 \sf Product  \: of \:  Zeros  = P =  \dfrac{1}{ \alpha }  \times  \dfrac{1}{ \beta }  \\  \\  =  \large\frac{1}{  \alpha \beta }  \\  \\ \Large\pmb{   \boxed{ \boxed{P =  \frac{1}{6} }}}

Now, Required Equation will be :

  \Large\mathtt{ {x}^{2}  -  S \: x +  P = 0 }

That is :-

  \mathtt{{x}^{2} -  \dfrac{5}{6} x  +  \frac{1}{6}  = 0} \\  \\  :   {\longmapsto \pmb{6 {x}^{2}   - 5x + 1 = 0}}

 \Large \red{\mathfrak{  \text{W}hich \:   \: is  \:  \: the  \:  \: required} }\\ \huge \red{\mathfrak{ \text{ A}nswer.}}

-------------------------------

Similar questions