Math, asked by thirumala974, 9 months ago

If Alpha and beta are the roots of 4x^2+7x+2=0,, then the equation whose roots are Alpha^2 and beta^2is ​

Answers

Answered by MaheswariS
0

\underline{\textsf{Given:}}

\textsf{$\alpha$ and $\beta$ are roots of $4x^2+7x+2=0$}

\underline{\textsf{To find:}}

\textsf{The equation whose roots are ${\alpha}^2$ and ${\beta}^2$}

\underline{\textsf{Solution:}}

\textsf{Consider,}

\mathsf{4x^2+7x+2=0}

\textsf{Then,}

\mathsf{\alpha+\beta=\dfrac{-7}{4}}

\mathsf{\alpha\,\beta=\dfrac{2}{4}=\dfrac{1}{2}}

\textsf{We form a quadratic equation having roots ${\alpha}^2$ and ${\beta}^2$}

\textsf{Sum of the roots}

\mathsf{={\alpha}^2+{\beta}^2}

\mathsf{=(\alpha+\beta)^2-2\,\alpha\,\beta}

\mathsf{=(\dfrac{-7}{4})^2-2(\dfrac{1}{2})}

\mathsf{=\dfrac{49}{16}-1}

\mathsf{=\dfrac{33}{16}}

\textsf{Product of the roots}

\mathsf{={\alpha}^2\,{\beta}^2}

\mathsf{=(\alpha\beta)^2}

\mathsf{=(\dfrac{1}{2})^2}

\mathsf{=\dfrac{1}{4}}

\textsf{The required quadratic equation is}

\mathsf{x^2-({\alpha}^2+{\beta}^2)x+{\alpha}^2{\beta}^2=0}

\mathsf{x^2-\dfrac{33}{16}x+\dfrac{1}{4}=0}

\implies\boxed{\mathsf{16x^2-33x+4=0}}

Similar questions