Math, asked by massaswath786, 11 months ago

If alpha and beta
are the roots of 5x²-px+1=0
and alpha-beta=1, then find p

Answers

Answered by raushan6198
4

Step-by-step explanation:

5 {x}^{2}  - px + 1 = 0 \\  \alpha  -  \beta  =  \: 1 \:  \: ...........(1) \\  \\  \alpha  +  \beta  =  \frac{ - b}{a}  \\  =  >  \alpha  +  \beta  =  -  \frac{ - p}{5}  \\  =  >  \alpha  +  \beta  =  \frac{p}{5}  \\  \\  \alpha  \beta  =  \frac{c}{a}  \\  \alpha  \beta  =  \frac{1}{5}  \:  \:  \:  \:  \:  \: ........(2) \\  \\ putting \: the \: values \: of \:  \:  \:  \ \: beta in \:  \: equation \: (1) \\  \alpha  -  \beta  = 1 \\  =  >  \alpha  -  \frac{1}{5 \alpha }  = 1 \\  =  > 5 { \alpha }^{2}  - 1 = 5 \alpha  \\  =  > 5 { \alpha }^{2}  - 5 \alpha  - 1 = 0 \\  =  >  \alpha  =  \frac{ 5 +  -  \sqrt{ {5}^{2}  +  4 \times 5 \times 1} }{2 \times 5}  \\  =  >  \alpha  =  \frac{5 +  -  \sqrt{25 + 20} }{10}  \\  =  >  \alpha  =  \frac{5 +  -  \sqrt{45} }{10}  \\  =  >  \alpha  =  \frac{5 +  - 3 \sqrt{5} }{10}  \\  =  >  \alpha  =  \frac{5  + 3 \sqrt{5} }{10}  \:  \: or \: x =  \frac{5 - 3 \sqrt{5} }{10}  \\  \\  \\  \\  \beta  =  \frac{1}{5 \alpha }  \\  =  \frac{1}{5 \times 5 + 3 \sqrt{5} }  \times 10 \\  =  \frac{2}{5 + 3 \sqrt{5} }  \\  \\  \alpha  +  \beta  =  \frac{p}{5}  \\  =  >  \frac{5 + 3 \sqrt{5} }{10}  +  \frac{2}{5 + 3 \sqrt{5} }  =  \frac{p}{5}  \\  =  >  \frac{( {5 + 3 \sqrt{5} )}^{2}  + 2 \times 10}{10(5 + 3 \sqrt{5} )}  =  \frac{p}{5 }  \\  =  >  \frac{ {5}^{2}  + 30 \sqrt{5} +  45 + 20}{2(5 + 3 \sqrt{5} )}  = p \\  =  >  \frac{25 + 65 + 30 \sqrt{5} }{10 + 6 \sqrt{5} }  = p \\  =  >  \frac{90 + 30 \sqrt{5} }{10 + 6 \sqrt{5} }  = p

Similar questions