Math, asked by ranigite38145, 10 months ago

if alpha and beta are the roots of a quadratic equation ax^2+bx+c=0 tben value of alpha - beta is​

Answers

Answered by Anonymous
22

{\green{\underline{\huge{\mathbb{Solution:-}}}}}

 \alpha  \: and \:  \beta  \: are \: the \: roots \: of \: a \: quadratic \: equation.

So,

 \alpha  +  \beta  =  \frac{ - b}{a} ........(i)

 \alpha  \beta  =  \frac{c}{a} ..........(ii)

Take (i) no. equation.

 \alpha  +  \beta  =  \frac{ - b}{a}

Squre in both sides.

 {( \alpha  +  \beta )}^{2}  =  { (\frac{ - b}{a} )}^{2}  \\  =  >  {( \alpha  -  \beta )}^{2}  + 4 \alpha  \beta  =  \frac{ {b}^{2} }{ {a}^{2} }  \\  =  >  {( \alpha  -  \beta )}^{2}  + 4 \times  \frac{c}{a}  =  \frac{ {b}^{2} }{ {a}^{2} }  \\  =  >  {( \alpha  -  \beta )}^{2}  =  \frac{ {b}^{2} }{ {a}^{2} }  -  \frac{4c}{a}  \\  =  >  {( \alpha  -  \beta )}^{2}  =  \frac{ {b}^{2} - 4ac }{ {a}^{2} }  \\  =  (  \alpha  -  \beta ) =  \sqrt{ \frac{ {b}^{2}  - 4ac}{ {a}^{2} } }  \\  =  > ( \alpha  -  \beta ) =  \frac{ \sqrt{ {b}^{2} - 4ac } }{a}

★★{\green{\underline{\huge{\mathbb{Answer:-}}}}}

( \alpha  -  \beta ) =  \frac{ \sqrt{ {b}^{2}  - 4ac} }{a}

Similar questions
Math, 10 months ago