Math, asked by Bhavyasree262, 2 months ago

if alpha and beta are the roots of ax^2+bx+c then find 1/alpha - 1/beta​

Answers

Answered by MsQueen
4

Question :

If α and β are the roots of ax² + bx + c = 0. Then, find 1/α - 1/β.

Solution:

We know that,

  • α + β = -b/c
  • αβ = c/a

Now,

( \alpha  -  \beta )^{2}  =  \alpha  ^{2}  +  \beta^{2}  - 2 \alpha  \beta   \:   \:  \:  \:  \: \\  \\ ( \alpha  -  \beta )^{2}  =( \alpha  +  \beta ) ^{2}- 4 \alpha  \beta  \:  \:  \:  \:  \\  \\  ( \alpha  -  \beta )^{2}  =   (\frac{ -b}{a}^{2} ) -  \frac{4c}{a}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \: \\  \\ ( \alpha  -  \beta )^{2}  =  \frac{ b^{2}  - 4c}{ {a}^{2} } \:  \:  \:  \:  \:  \:  \:  \:  \:\:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \alpha  -  \beta  =  \sqrt{\frac{ b^{2}  - 4c}{ {a}^{2} }}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\:  \:  \:  \:  \\  \\  \bold{\alpha  -  \beta  =  \pm \frac{  \sqrt{ b^{2}  - 4c}}{ {a}^{2} }}\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:\:  \:  \:  \:  \:  \:  \:

Now,

 \dfrac{1}{ \alpha }  -  \dfrac{1}{ \beta }

\implies \dfrac{ \alpha  -  \beta }{ \alpha  \beta }

 \implies \dfrac{  \pm \: \sqrt{{b}^{2} - 4ac}}{a}  \times  \dfrac{a}{c}

\boxed{ \bf \therefore \:  \dfrac{1}{ \alpha }  -  \frac{1}{ \beta } = \frac{  \pm \: \sqrt{{b}^{2} - 4ac}}{c }}

Answered by shardakuknaa
0

Step-by-step explanation:

We know that,

α + β = -b/c

αβ = c/a

Now,

\begin{gathered}( \alpha - \beta )^{2} = \alpha ^{2} + \beta^{2} - 2 \alpha \beta \: \: \: \: \: \\ \\ ( \alpha - \beta )^{2} =( \alpha + \beta ) ^{2}- 4 \alpha \beta \: \: \: \: \\ \\ ( \alpha - \beta )^{2} = (\frac{ -b}{a}^{2} ) - \frac{4c}{a} \: \: \: \: \: \: \: \: \: \: \: \: \\ \\ ( \alpha - \beta )^{2} = \frac{ b^{2} - 4c}{ {a}^{2} } \: \: \: \: \: \: \: \: \:\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \\ \alpha - \beta = \sqrt{\frac{ b^{2} - 4c}{ {a}^{2} }} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:\: \: \: \: \\ \\ \bold{\alpha - \beta = \pm \frac{ \sqrt{ b^{2} - 4c}}{ {a}^{2} }}\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:\: \: \: \: \: \: \: \end{gathered}

(α−β)

2

2

2

−2αβ

(α−β)

2

=(α+β)

2

−4αβ

(α−β)

2

=(

a

−b

2

)−

a

4c

(α−β)

2

=

a

2

b

2

−4c

α−β=

a

2

b

2

−4c

α−β=±

a

2

b

2

−4c

Now,

\dfrac{1}{ \alpha } - \dfrac{1}{ \beta }

α

1

β

1

\implies \dfrac{ \alpha - \beta }{ \alpha \beta }⟹

αβ

α−β

Similar questions