if alpha and beta are the roots of ax^2+bx+c then find 1/alpha - 1/beta
Answers
Question :
If α and β are the roots of ax² + bx + c = 0. Then, find 1/α - 1/β.
Solution:
We know that,
- α + β = -b/c
- αβ = c/a
Now,
Now,
Step-by-step explanation:
We know that,
α + β = -b/c
αβ = c/a
Now,
\begin{gathered}( \alpha - \beta )^{2} = \alpha ^{2} + \beta^{2} - 2 \alpha \beta \: \: \: \: \: \\ \\ ( \alpha - \beta )^{2} =( \alpha + \beta ) ^{2}- 4 \alpha \beta \: \: \: \: \\ \\ ( \alpha - \beta )^{2} = (\frac{ -b}{a}^{2} ) - \frac{4c}{a} \: \: \: \: \: \: \: \: \: \: \: \: \\ \\ ( \alpha - \beta )^{2} = \frac{ b^{2} - 4c}{ {a}^{2} } \: \: \: \: \: \: \: \: \:\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \\ \alpha - \beta = \sqrt{\frac{ b^{2} - 4c}{ {a}^{2} }} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:\: \: \: \: \\ \\ \bold{\alpha - \beta = \pm \frac{ \sqrt{ b^{2} - 4c}}{ {a}^{2} }}\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:\: \: \: \: \: \: \: \end{gathered}
(α−β)
2
=α
2
+β
2
−2αβ
(α−β)
2
=(α+β)
2
−4αβ
(α−β)
2
=(
a
−b
2
)−
a
4c
(α−β)
2
=
a
2
b
2
−4c
α−β=
a
2
b
2
−4c
α−β=±
a
2
b
2
−4c
Now,
\dfrac{1}{ \alpha } - \dfrac{1}{ \beta }
α
1
−
β
1
\implies \dfrac{ \alpha - \beta }{ \alpha \beta }⟹
αβ
α−β