Math, asked by soodreena334, 1 month ago

if alpha and beta are the roots of equation (-2x²+6x-3) then alpha square+ beta square equals?​

Answers

Answered by mathdude500
3

\large\underline{\bf{Solution-}}

\rm :\longmapsto\:\sf \: Since \:  \alpha  \: and \:  \beta  \: are \: roots \: of \:  -  {2x}^{2} + 6x - 3

We know that,

 \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{\red{\sf Sum\ of\ the\ roots=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\bf\implies \: \alpha  +  \beta  =  - \dfrac{6}{( - 2)}  = 3

And

 \:  \:  \:  \:  \: \boxed{\purple{\tt Product\ of\ the\ zeroes=\frac{c}{a}}}

\bf\implies \: \alpha  \beta   = \dfrac{ - 3}{ - 2}  =  \dfrac{3}{2}

Consider,

\rm :\longmapsto\: { \alpha }^{2} +  { \beta }^{2}

 \sf \:  =  \:  \:  \:  {( \alpha  +  \beta )}^{2}  - 2 \alpha  \beta

 \sf \:  =  \:  \:  \: {(3)}^{2}  - 2 \times  \dfrac{3}{2}

 \sf \:  =  \:  \:  \:9 - 3

 \sf \:  =  \:  \:  \:6

Hence,

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \underbrace{ \boxed{ \bf\: { \alpha }^{2} +  { \beta }^{2}   = 6}}

Additional Information :-

\rm :\longmapsto\:\sf \: If  \: \alpha, \:   \beta   \: and \:  \gamma  \: are \: roots \: of \:   {ax}^{3} +  {bx}^{2} + cx  + d

then,

\rm :\longmapsto\: \alpha  + \beta +   \gamma  =  - \dfrac{b}{a}

\rm :\longmapsto\: \alpha \:  \beta   + \beta \gamma  +   \gamma \alpha   =   \dfrac{c}{a}

\rm :\longmapsto\: \alpha\beta  \gamma  =  - \dfrac{d}{a}

Similar questions