Math, asked by gollapudijeswant, 11 months ago

If alpha and beta are the roots of equation x2+3x+2=0 then alpha5+ beta5=

Answers

Answered by TrickYwriTer
15

Step-by-step explanation:

Given -

α and β are zeroes of polynomial x² + 3x + 2 = 0

To Find -

α^5 + β^5

In x² + 3x + 2

here,

a = 1

b = 3

c = 2

Now,

Using Quadratic formula -

  • x = -b ± √b² - 4ac/2a

» -(3) ± √(3)² - 4×1×2/2(1)

» -3 ± √9 - 8/2

» -3 ± √1/2

» -3 ± 1/2

Zeroes are -

  • x = -3 - 1/2 = -4/2 = -2

and

  • x = -3 + 1/2 = -2/2 = -1

Let α = -2 and β = -1

Then,

The value of α^5 + β^5 is

» (-2)^5 + (-1)^5

» -32 + (-1)

» -32 - 1

  • » -33

Hence,

The value of α^5 + β^5 is -33

Answered by Anonymous
10

\bold{\huge{\underline{\underline{\rm{ Given :}}}}}

 \alpha  \: and \:  \beta  \: are \: the \: roots \: of \:  \\ equation \:  {x}^{2}  + 3x + 2 = 0

\bold{\huge{\underline{\underline{\rm{ To\:Find :}}}}}

 { \alpha }^{5}  +  { \beta }^{5}

\rule{200}{1}

\huge{\underline{\underline{\purple{♡Solution→}}}}

First find the roots of Given equation -

 {x}^{2}  + 3x + 2 = 0 \\  {x}^{2}  + 2x + x + 2 = 0 \\ x(x + 2) + 1(x + 2) = 0 \\ (x + 1)(x + 2) = 0

\rule{200}{1}

First Root :-

x + 1 = 0 \\ x =  - 1

We can say that :-

 \alpha  =  - 1

\rule{200}{1}

Second Root :-

x + 2 = 0 \\ x =  - 2

We can say that :-

 \beta  =  - 2

\rule{200}{1}

Now the question is -

 { \alpha }^{5}  +  { \beta }^{5}  \\  = ( { - 1)}^{5}  + ( { - 2)}^{5}  \\  =  - 1 +( ( - 2) \times ( - 2) \times ( - 2) \times ( - 2) \times ( - 2)) \\  =  - 1 - 32 \\  =  - 33

\rule{200}{1}

Hence :-

\boxed{ {  \alpha }^{5}  +  { \beta }^{5}  =  - 33}

\rule{200}{1}

TheEnforceR ◉‿◉

Similar questions