Math, asked by ForOnlyMyFollowers, 4 months ago

If alpha and beta are the roots of equation x² - 5x + 6 = 0, then find the value of alpha - beta.​

Answers

Answered by llMrIncrediblell
400

\underline{\underline{\sf{{\maltese\:\:Given}}}}

  •   \sf\alpha  +  \beta are the roots of the equation x² - 5x + 6 = 0.

\underline{\underline{\sf{\maltese\:\:To\: Find}}}

  •  \sf \:  \alpha   - \beta  = \:  ?

\underline{\underline{\sf{\maltese\:Calculations \:}}}

\bf\red{STEP \:1:-}

  • Compare x² + 5x - 6 = 0 with ax² + bx + c = 0 to get
  • a = 1, b = 5 and c = 6.

\bf\red{STEP \:2:-}

  • Sum of roots  \sf \:  \alpha   + \beta  =  \frac{ - b}{a}  =  \frac{ - ( - 5)}{1}

or,

  •   \sf\alpha   + \beta  = 5

\bf\red{STEP \:3:-}

  • Product of roots   \sf \: \alpha  \beta  =  \frac{c}{a}  =  \frac{6}{1}

or,

  •  \sf \:  \alpha  \beta  = 6

\bf\red{STEP \:4:-}

\alpha  -  \beta  =  ±   \sqrt{ {( \alpha  +  \beta) }^{2} - 4 \alpha  \beta  }

substituting the values,

\longrightarrow \alpha  - \beta  =   ± \sqrt{ {5}^{2} - 4 \times 6 }

\longrightarrow \alpha   - \beta  =   ±  \sqrt{25 - 24}

\longrightarrow \alpha   - \beta  =  ± \sqrt{1}

\purple{\alpha  -  \beta  = 1}

and

\pink{\alpha  -  \beta  =  - 1}

HENCE, the value of  \alpha  -  \beta is -1 and +1

Answered by Anonymous
170

\huge{\tt{\fcolorbox{aqua}{azure}{\color{red}{Answer}}}}

x2−5x+6=0…(i)

If α and β are two solution of ax2+bx+c=0 then α+β=−ba and αβ=ca.

So from equation (i) and using above we can write α+β=−(−5)=5 and αβ=6 .

Now α+β=5

Or, (α+β)2=52

Or, (α−β)2+4αβ=−(−5)=25

Or, (α−β)2+4×6=25

Or, (α−β)2+24=25

Or, (α−β)2=25−24=1

Or, α−β=± 1(Answer)

Similar questions