Math, asked by rohithkumar6615, 11 months ago

If alpha and beta are the roots of polynomials x square + x + 1 ,then value of 1 upon alpha + 1 upon beta is

Answers

Answered by Anonymous
6

Given :

 \sf \implies p(x) = {x}^{2}  + x + 1

To Find :

 \sf \implies \dfrac{1}{ \alpha} + \dfrac{1}{ \beta}

Solution :

 \implies\sf \alpha +\beta = - \frac{b}{a}\\ \\\sf \implies\alpha + \beta = - \frac{1}{1} \\  \\\implies\boxed{ \alpha + \beta = -1}

____________________________________

\implies \sf \alpha \beta =  \frac{c}{a} \\  \\\implies\sf \alpha \beta =  \frac{1}{1} \\  \\\implies\boxed{\sf \alpha \beta = 1}

Now

\implies \frac{1}{ \alpha} + \frac{1}{ \beta} = \frac{ \beta +  \alpha}{ \alpha \beta} \\  \\\implies\frac{1}{ \alpha} + \frac{1}{ \beta} =  \frac{ - 1}{1} \\  \\ \implies \boxed{ \boxed{\frac{1}{ \alpha} + \frac{1}{ \beta} =  - 1}}


Anonymous: thnks
Anonymous: bro
Anonymous: answer us good
Anonymous: hello
Anonymous: Hehe
Anonymous: who?
Answered by Anonymous
3

Given that ,

The quadratic eq is (x)² + x + 1 = 0

As we know that ,

The sum of roots i.e α + β is

 \star \:  \: α + β =   - \frac{b}{a}

The product of roots i.e α × β is

 \star \:  \: α  \times  β =    \frac{c}{a}

Thus ,

 \sf \Rightarrow  α + β =   - 1

and

\sf \Rightarrow   α  \times β =1

Now , we have to find the value of

 \star \:  \:  \mathtt{ \underline{ \fbox{ \frac{1}{α}  +  \frac{1}{β}  }}}

It can be written as ,

 \star \:  \:  \mathtt{ \underline{ \fbox{  \frac{ β \:  + \:  α}{αβ}  }}}

Substitute the known values in above equation , we get

\sf \Rightarrow  \frac{ - 1}{1}  \\  \\\sf \Rightarrow   - 1

 \therefore  \underline{\sf \bold{The \:  required  \: value \:  is  \: -1}}

Similar questions