Math, asked by Bhavyasree262, 5 months ago

if alpha and beta are the roots of the ax^2+bx+c=0 then find 1/alpha-1/alpha
please answer it fast​

Attachments:

Answers

Answered by MsQueen
1

Question :

If α and β are the roots of ax² + bx + c = 0. Then, find 1/α - 1/β.

Solution:

We know that,

  • α + β = -b/c
  • αβ = c/a

Now,

( \alpha  -  \beta )^{2}  =  \alpha  ^{2}  +  \beta^{2}  - 2 \alpha  \beta   \:   \:  \:  \:  \: \\  \\ ( \alpha  -  \beta )^{2}  =( \alpha  +  \beta ) ^{2}- 4 \alpha  \beta  \:  \:  \:  \:  \\  \\  ( \alpha  -  \beta )^{2}  =   (\frac{ -b}{a}^{2} ) -  \frac{4c}{a}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \: \\  \\ ( \alpha  -  \beta )^{2}  =  \frac{ b^{2}  - 4c}{ {a}^{2} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \alpha  -  \beta  =  \sqrt{\frac{ b^{2}  - 4c}{ {a}^{2} }}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \bold{\alpha  -  \beta  =  \pm \frac{  \sqrt{ b^{2}  - 4c}}{ {a}^{2} }}\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:\:  \:  \:  \:  \:  \:  \:

Now,

 \dfrac{1}{ \alpha }  -  \dfrac{1}{ \beta }

\implies \dfrac{ \alpha  -  \beta }{ \alpha  \beta }

 \implies \dfrac{  \pm \: \sqrt{{b}^{2} - 4ac}}{a}  \times  \dfrac{a}{c}

\boxed{ \bf \therefore \:  \dfrac{1}{ \alpha }  -  \frac{1}{ \beta } = \frac{  \pm \: \sqrt{{b}^{2} - 4ac}}{c }}

Similar questions