Math, asked by nikitagomes46, 9 months ago

If alpha and beta are the roots of the equation 3x^2+2x+1=0 whose roots are 1/ alpha and 1/ beta

Answers

Answered by Anonymous
1

\huge\bigstar\sf\red{Answer:}

\sf{3x^{2}+2x+1=0}

\sf{\therefore{\alpha+\beta=\dfrac{-2}{3}...(1)}}

\sf{\therefore{\alpha\beta=\dfrac{1}{3}...(2)}}

\sf{\therefore{\alpha^{2}+\beta^{2}=(\frac{-2}{3})^{2}-2(\frac{1}{3})}}

\sf{=\frac{4-6}{9}}

\sf{=\frac{-2}{9}...(3)}

\sf{For \ new \ quadratic \ equation}

\sf{Sum \ of \ roots=\frac{1}{\alpha}+\frac{1}{\beta}}

\sf{=\frac{\alpha^{2}+\beta^{2}}{\alpha\beta}=\frac{-2}{3}}

\sf{Product \ of \ roots=\frac{1}{\alpha}\times\frac{1}{\beta}=3}

\sf{x^{2}-\frac{2x}{3}+3}

\sf{\longmapsto{3x^{2}-2x+9, \ is \ required \ equation.}}

Similar questions