Math, asked by musabalayahya, 1 day ago

If alpha and beta are the roots of the equation 3x²+7x-2=what are the value of alpha)beta+beta/alpha

Answers

Answered by popatkhot1977
10

Answer:

alfa= -7+root73/6 ,beta= -7 -root 73/6

Step-by-step explanation:

3x^2+7x-2=0

comparing with ax^2 +bx+c=0

a=3 ,b= 7, c= -2

b^2 -4ac= 7^2 -( 4×3× -2)=49+24 =73

x = -b +- root ( b^2 -4ac)/2a

x= -7 +-root 73/ 6

alfa= -7 +-root 73/6

beta= -7 +- root 73/6

Answered by mathdude500
28

Appropriate Question :-

If  \alpha and  \beta are the roots of the equation 3x²+7x-2=0, what is the value of  \dfrac{\alpha}{\beta}+ \dfrac{\beta}{\alpha} ?

\large\underline{\sf{Solution-}}

Given that

\rm \:  \alpha,  \beta \: are \: the \: roots \: of \: the \: equation \:  {3x}^{2} + 7x - 2 = 0 \\

We know,

\boxed{\red{\sf Sum\ of\ the\ roots=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}} \\

\rm\implies \: \alpha  +  \beta  =  -  \: \dfrac{7}{3}  \\

And

\boxed{\red{\sf Product\ of\ the\ roots=\frac{Constant}{coefficient\ of\ x^{2}}}} \\

\rm\implies \: \alpha\beta  =  -  \: \dfrac{2}{3}  \\

Now, Consider

\rm \: \dfrac{ \alpha }{ \beta }  + \dfrac{ \beta }{ \alpha }  \\

\rm \:  =  \: \dfrac{ { \alpha }^{2}  +  { \beta }^{2} }{ \alpha  \beta }  \\

\rm \:  =  \: \dfrac{ ({ \alpha  +  \beta )}^{2} - 2 \alpha  \beta  }{ \alpha  \beta }  \\

\rm \:  =  \: \bigg[\bigg( - \dfrac{7}{3}\bigg)^{2} + 2 \times  \dfrac{2}{3}   \bigg] \div \bigg( -  \dfrac{2}{3}\bigg) \\

\rm \:  =  \: \bigg[ \frac{49}{9}  + \dfrac{4}{3}   \bigg]  \times  \bigg( -  \dfrac{3}{2}\bigg) \\

\rm \:  =  \: \bigg[ \frac{49 + 12}{9} \bigg]  \times  \bigg( -  \dfrac{3}{2}\bigg) \\

\rm \:  =  \: \bigg[ \frac{61}{3} \bigg]  \times  \bigg( -  \dfrac{1}{2}\bigg) \\

\rm \:  =  \:  -  \: \dfrac{61}{6}  \\

Hence,

\rm\implies \:\boxed{ \rm{ \:\bf\: \dfrac{ \alpha }{ \beta }  + \dfrac{ \beta }{ \alpha }  =  \:  -  \: \dfrac{61}{6}  \:  \: }} \\

\rule{190pt}{2pt}

Additional Information :-

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

  • If Discriminant, D > 0, then roots of the equation are real and unequal.

  • If Discriminant, D = 0, then roots of the equation are real and equal.

  • If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

  • Discriminant, D = b² - 4ac
Similar questions