Math, asked by muaikeie, 1 year ago

if alpha and beta are the roots of the equation 3x² minus 11x plus 6≈0 find the
1×beta
alpha² plus beta²
alpha minus beta

Answers

Answered by pankajsirari222
17

Question Solved in Paper Plz see the pic for Answer

Hope this helps!

:-)

Attachments:

Anonymous: Good
Answered by BrainlyConqueror0901
48

{\bold{\underline{\underline{Answer:}}}}

{\bold{\therefore \beta\alpha^{2}+\beta^{2}\alpha-\alpha=\frac{13}{3}}}

{\bold{\therefore\beta\alpha^{2}+\beta^{2}\alpha-\alpha=6}}

{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \underline \bold{Given : } \\  \implies  \alpha  \: and \:  \beta  \in \: (3 {x}^{2}  - 11x + 6 = 0) \\  \\  \underline \bold{To \: Find : }  \\  \implies  \beta  { \alpha }^{2}  -  { \beta }^{2}  \alpha  -  \beta  = ?

• According to given question :

 \bold{Using \: middle \: term \: spliting : }  \\  \implies  {3x}^{2} - 11x + 6 = 0 \\  \\   \implies  {3x}^{2}   - 9x - 2x + 6 = 0 \\  \\  \implies 3x(x - 3) - 2(x - 3) = 0 \\  \\  \implies (3x - 2)(x - 3) = 0 \\   \\  \bold{Case \: I}  \\   \bold{if \:  \alpha  =  \frac{ 2}{3}  \: and \:  \beta  = 3} \\  \\  \implies   \beta  { \alpha }^{2}   +  { \beta }^{2}  \alpha    -   \beta  \\  \\  \implies 3 \times(  \frac{2}{3})^{2}  +  {3}^{2}  \times  \frac{2}{3}   - 3 \\  \\  \implies \frac{4}{3}  + 6  - 3 \\  \\   \implies  \frac{4}{3}  + 3 \\  \\  \implies  \frac{4 + 9}{3}  \\  \\   \bold{\implies  \frac{13}{3} } \\  \\ \bold{ Case \: II} \\  \bold{if \:  \alpha  = 3 \: and \:  \beta =  \frac{2}{3} } \\  \\  \implies  \beta  { \alpha }^{2}  +  { \beta }^{2} \alpha  -  \beta  \\  \\  \implies  \frac{2}{3}   \times  {3}^{2}  +  (\frac{2}{3})^{2}  \times 3 -  \frac{2}{3}  \\  \\  \implies  6 +  \frac{2}{3}  -  \frac{2}{3}  \\  \\   \bold{\implies 6}


Anonymous: Good explanation :)
Similar questions