Math, asked by namanjain5950, 9 months ago

If alpha and beta, are the roots of the equation 9x2
+ 6x + 1 = 0, then equation with roots

1 / alpha and 1 / beta
is

a) 2x^2
+ 3x + 8 = 0
b) x^2 + 6x + 9 = 0
c) x^2
+ 5x – 9 = 0
d) 2x^2
– 3x – 8 = 0​

Answers

Answered by uddhavgpt
1

Answer:

x²-6x+1

Step-by-step explanation:

Please see the attached image.

Attachments:
Answered by raushan6198
1

Step-by-step explanation:

 \alpha \:  and \:  \beta  \: are \: the \: roots \\  \\ 9 {x}^{2}  + 6x + 1 \\  \alpha  +  \beta  =  \frac{ - b}{a}  \\  =  >  \alpha  +  \beta  =  \frac{ - 6}{9}  \\  =  >  \alpha  +  \beta  =  \frac{ - 2}{3}  \\  \\ and \:  \:  \:  \alpha  \beta  =  \frac{c}{a}  \\  \:  \:  \alpha  \beta  =  \frac{1}{9}  \\  \\  \\ we \: have \: to \: find \\  \\  \frac{1}{ \alpha }  +  \frac{1}{ \beta }  \\  =  \frac{ \alpha  +  \beta }{ \alpha  \beta }  \\  =  \frac{ \frac{ - 2}{3} }{ \frac{1}{9} }  \\  =  \frac{ - 2 \times 9}{3}  \\  =  - 2 \times 3 =  - 6

 \alpha \:  and \:  \beta  \: are \: the \: roots \\  \\ 9 {x}^{2}  + 6x + 1 \\  \alpha  +  \beta  =  \frac{ - b}{a}  \\  =  >  \alpha  +  \beta  =  \frac{ - 6}{9}  \\  =  >  \alpha  +  \beta  =  \frac{ - 2}{3}  \\  \\ and \:  \:  \:  \alpha  \beta  =  \frac{c}{a}  \\  \:  \:  \alpha  \beta  =  \frac{1}{9}  \\  \\  \\ we \: have \: to \: find \: the \: equation \: whose \: roots \: are \:  \frac{1}{ \alpha } \:  \: and \:  \\  \frac{1}{ \beta }   \\  \\  \frac{1}{ \alpha }  +  \frac{1}{ \beta }  \\  =   \frac{ \alpha  +  \beta }{ \alpha  \beta }  \\  =  \frac{ \frac{ - 2}{3} }{ \frac{1}{9} }  \\  =  \frac{ - 2 \times 9}{3}  \\  =  - 6 \\  \\  \frac{1 }{ \alpha }  \times   \frac{1}{ \beta }  \\   = \frac{1}{ \frac{1}{9} }  \\  = 9 \\  \\  {x}^{2}  + ( \frac{1}{ \alpha }  +  \frac{1}{ \beta } )x   -  \frac{1}{ \alpha }  \times  \frac{1}{ \beta }  = 0 \\  =  >  {x}^{2}  - 6x - 9 = 0 \:  \:  \: ans

Similar questions