if alpha and beta are the roots of the equation ax²-bx+b=0 then prove that √alpha/beta + √beta/alpha-√b/a=0
Answers
Answered by
0
Answer:
roots are α and β
\begin{gathered}\alpha + \beta = - \frac{b}{a} = - \frac{ - b}{a} \\ \alpha \beta = \frac{c}{a} = \frac{b}{a} \\ \sqrt{ \frac{ \alpha }{ \beta } } + \sqrt{ \frac{ \beta }{ \alpha } } \\ \frac{ \sqrt{ \alpha } }{ \sqrt{ \beta } } + \frac{ \sqrt{ \beta } }{ \sqrt{ \alpha } } \\ \frac{ \alpha + \beta }{ \sqrt{ \alpha \beta } } \\ \frac{ \frac{ - b}{a} }{ \sqrt{ \frac{b}{a} } } \\ - \frac{b \sqrt{a} }{a \sqrt{b} } \\ - \sqrt{ \frac{b}{a} }\end{gathered}
α+β=−
a
b
=−
a
−b
αβ=
a
c
=
a
b
β
α
+
α
β
β
α
+
α
β
αβ
α+β
a
b
a
−b
−
a
b
b
a
−
a
b
Similar questions
English,
3 months ago
Social Sciences,
3 months ago
Math,
3 months ago
Social Sciences,
7 months ago
Physics,
10 months ago
Math,
10 months ago