Math, asked by IshaniDatta, 1 month ago

if alpha and beta are the roots of the equation ax2+bx+c=0 then find √alpha / beta + √beta/ alpha = √b/a​

Attachments:

Answers

Answered by senboni123456
2

Step-by-step explanation:

We have,

 \tt{ \green{ax^{2}  - bx + c = 0}}

Roots are α and β

so,

 \sf{ \purple{ Sum \:  \: of \:  \: roots} , \alpha  +  \beta  =  - \dfrac{( - b)}{a}  =  \dfrac{b}{a}  }

 \sf{ \purple{ Product \:  \: of \:  \: roots} , \alpha \beta  =  \dfrac{c}{a}  }

Now,

 \sf{ \sqrt{ \dfrac{ \alpha }{ \beta }} +  \sqrt{ \dfrac{ \beta }{ \alpha } } }

 \sf{ =   \dfrac{ \alpha +  \beta  }{  \sqrt{ \alpha \beta }}  }

 \sf{ =   \dfrac{  \dfrac{b}{a}   }{  \sqrt{  \dfrac{c}{a} }}  }

 \sf{ =   \dfrac{  b    }{  \sqrt{ ac }} }

Answered by mathdude500
3

Appropriate Question :-

 \sf \:  \alpha,  \beta  \: are \: the \: roots \: of \:  {ax}^{2} - bx + b = 0, \: prove \: that

 \sf \:  \sqrt{\dfrac{ \alpha }{ \beta } }  +  \sqrt{\dfrac{ \beta }{ \alpha } }  =  \sqrt{\dfrac{b}{a} }

 \red{\large\underline{\sf{Solution-}}}

Given that,

\rm :\longmapsto\:\alpha,  \beta  \: are \: the \: roots \: of \:  {ax}^{2} - bx + b = 0, \:

We know

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\rm \implies\: \alpha  +  \beta  =  -  \: \dfrac{( - b)}{a}

\rm \implies\: \alpha  +  \beta  =  \: \dfrac{b}{a}

And

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\rm \implies\: \alpha  \beta  = \dfrac{b}{a}

Now, Consider

 \rm :\longmapsto\:\sqrt{\dfrac{ \alpha }{ \beta } }  +  \sqrt{\dfrac{ \beta }{ \alpha } }

\rm \:  =  \: \dfrac{ \alpha  +  \beta }{ \sqrt{ \alpha  \beta } }

\rm \:  =  \: \dfrac{\dfrac{b}{a} }{ \sqrt{\dfrac{b}{a} } }

\rm \:  =  \:  \sqrt{\dfrac{b}{a} }

Hence,

\rm \implies\:\boxed{ \tt{ \:  \sqrt{\dfrac{ \alpha }{ \beta } }  +  \sqrt{\dfrac{ \beta }{ \alpha } }  =  \sqrt{\dfrac{b}{a} }  \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to know :-

\red{\rm :\longmapsto\: \alpha , \beta , \gamma  \: are \: zeroes \: of \: a {x}^{3}  + b {x}^{2} +  cx + d, \: then}

\boxed{ \bf{ \:  \alpha  +  \beta  +  \gamma  =  - \dfrac{b}{a}}}

\boxed{ \bf{ \:  \alpha \beta   +  \beta \gamma   +  \gamma  \alpha  =  \dfrac{c}{a}}}

\boxed{ \bf{ \:  \alpha  \beta  \gamma  =  - \dfrac{d}{a}}}

Similar questions