Math, asked by gatiyalap7371, 1 year ago

If alpha and beta are the roots of the equation ax2+bx+c=0 then the values of 1/alpha^2 + 1/beta^2 is

Answers

Answered by theking20
0

Given,

α and β are the roots of the equation ax²+bx+c = 0

To Find,

The value of 1/α²+1/β²

Solution,

Since α and β are the roots of the equation ax²+bx+c = 0

So,

Sum of roots = α+β = -b/a, where b is the coefficient of x and a is the coefficient of x²

Product of roots = αβ = c/a, where c is the constant.

Now,

1/α²+1/β² = (α²+β²)/α²β²

               = ((α+β)²-2αβ)/(c/a)²

               = ((-b/a)²-2(c/a))/c²/a²

               = (b²/a²-2c/a)/c²/a²

               = (b²-2ac)/a²*a²/c²

               = (b²-2ac)/c²

Hnece the value of 1/α²+1/β² is (b²-2ac)/c².

Answered by swethassynergy
0

The value of \frac{1}{\alpha ^{2} } +\frac{1}{\beta ^{2} }   is  \frac{b^{2}-2ac }{c^{2} } .

Step-by-step explanation:

Given:

\alpha and \beta are the roots of the ax^{2} +bx+c=0.

To Find:

The values of  \frac{1}{\alpha ^{2} } +\frac{1}{\beta ^{2} }\ .

Formula Used:

If \alpha and \beta are the roots of the original quadratic ax^{2} +bx+c=0 orx^{2} +\frac{b}{a} x+\frac{c}{a} =0. ---------- equation no.01.

Then  (x-\alpha )(x-\beta )=0

         x^{2} -\alpha x-\beta x+\alpha \beta =0

         x^{2} - (\alpha +\beta) x+\alpha \beta =0    ------ equation no.02.  

 But, A and B are the same equation.  

       \alpha +\beta =\frac{-b}{a}     and  \alpha \beta =\frac{c}{a}

Solution:

As given- \alpha and \beta are the roots of the ax^{2} +bx+c=0.

\alpha +\beta =\frac{-b}{a}     and  \alpha \beta =\frac{c}{a}

\frac{1}{\alpha ^{2} } +\frac{1}{\beta ^{2} }\ =\frac{\alpha ^{2} +\beta ^{2} }{\alpha ^{2}\beta ^{2}  }

              =\frac{(\alpha+\beta  )^{2}-2\alpha \beta  }{(\alpha \beta  )^{2}  }

Putting value of  \alpha +\beta =\frac{-b}{a}     and  \alpha \beta =\frac{c}{a}.

              =\frac{(\frac{-b}{a})^{2}-2(\frac{c}{a} )  }{(\frac{c}{a} )^{2} }

             = \frac{\frac{b^{2} }{a^{2} }  -\frac{2c}{a}  }{\frac{c^{2} }{a^{2} } }

             =\frac{b^{2}-2ac }{c^{2} }

Thus, the value of \frac{1}{\alpha ^{2} } +\frac{1}{\beta ^{2} }   is  \frac{b^{2}-2ac }{c^{2} } .

Similar questions