English, asked by kashyap11104, 9 months ago

If alpha and beta are the roots of the equation x^2 -3x +1 = 0, then find the equation with roots 1/ alpha -2,1/beta -2
please give full solution ​

Attachments:

Answers

Answered by Anonymous
4

\huge\mathfrak\blue{Answer:}

Given:

  • We have been given a Quadratic Polynomial x² - 3x + 1 = 0
  • α and β are the zeros of given Quadratic Polynomial

To Find:

  • To find a Quadratic Polynomial whose zeros are (1/α-2) and (1/β-2)

Solution:

We have been given a Quadratic Polynomial

\boxed{\text{f ( x ) = x² - 3x + 1}}

Comparing it with standard form of Equation

\boxed{\text{a = 1 and b = ( - 3 ) and c = 1}}

______________________________

Relation Between Roots and Coefficient of a Quadratic Polynomial

\bigstar \: \text{α + β =} \sf{- \dfrac{b}{a}}

\implies \text{α + β = } \sf{- \left ( \dfrac{-3}{1} \right ) }

\implies \boxed{\text{α + β = 3}} ------------------ 1

Also we know that

\bigstar \: \text{αβ =}  \sf{\dfrac{c}{a}}

\implies \text{αβ =} \sf{\dfrac{1}{1}}

\implies \boxed{\text{αβ = 1 }} ---------------------- 2

_________________________________

We have to find a Quadratic Polynomial whose zeros are (1 / α - 2) and ( 1 / β - 2)

Finding sum and product of Required zeros

\odot Sum of Zeros

\implies \dfrac{1}{\text{α - 2}} + \dfrac{1}{\text{β - 2}}

Taking LCM

\implies \dfrac{1}{\text{α - 2}} + \dfrac{1}{\text{β - 2}}

\implies \dfrac{\text{β - 2 + α - 2}}{\text{(α - 2)(β - 2)} }

\implies \dfrac{\text{α + β - 4}}{\text{αβ - 2α - 2β + 4} }

\implies \dfrac{\text{( α + β ) - 4}}{\text{αβ - 2 ( α + β ) + 4}}

Substituting the Values in above Equation

\implies \dfrac{\text{( 3 ) - 4}}{\text{1 - 2 ( 3 ) + 4}}

\implies \dfrac{\text{-1}}{\text{-1}}

\implies \text{1 }

\large\boxed{\text{Sum of Zeros = 1 }}

___________________________

\odot Product of Zeros

\implies \dfrac{1}{\text{α - 2}} \times \dfrac{1}{\text{β - 2} }

\implies \dfrac{1}{\text{(α - 2)(β - 2)}}

\implies \dfrac{1}{\text{αβ - 2α - 2β + 4}}

\implies \dfrac{1}{\text{αβ - 2 ( α + β ) + 4}}

Substituting the Value in above Equation

\implies \dfrac{1}{\text{1 - 2 ( 3 ) + 4}}

\implies \dfrac{1}{-1}

\large\boxed{\text{Product of Zeros = ( - 1 ) }}

________________________________

Quadratic Equation whose sum and product of zeros is given

\text{p ( x ) = k [ x² - (Sum) x + Product]}

\text{p ( x ) = k [ x² - ( 1 ) x + ( -1 ) ]}

\text{p ( x ) = k [ x² - x - 1]}

Where k is a non zero Arbitrary Constant

______________________________

\huge\underline{\sf{\red{A}\orange{n}\green{s}\pink{w}\blue{e}\purple{r}}}

\large\boxed{\text{ p ( x ) = k [ x² - x -  1 ]}}

_______________________________

Similar questions