if alpha and beta are the roots of the equation x^2-p(x+1)-q=0 then the value of alpha square +(2+p)alpha beta +beta square?
Answers
Originally Answered: If \alpha and \beta are the roots of the equation x^2 -p(x+1)-q=0 then the value of \frac{\alpha^2+2\alpha+1}{\alpha^2+2\alpha+q} + \frac{\beta^2+2\beta+1}{\beta^2+2\beta+q}is a) 1, B) 2, c) 3, d) 0?
The given equation can be written as 2−−(+)=0. So,
+= and =−(+)
From here, we get =−−−
Now the question asks us to find:
2+2+12+2++2+2+12+2+
So the expression gets reduced to:
2+2+12+2−−−+2+2+12+2−−−
= (+1)2(+1)(−)+(+1)2(+1)(−)
= (+1)(−)+(+1)(−)
= (+1−−1)(−)
= (−)(−)
= 1
So the solution to this problem is 1
Hope this helped!
Answer:
1
Step-by-step explanation:
If α and β are the roots of the equation x 2 − p ( x + 1 ) − q= 0 or x 2 − p x − ( p + q ) = 0
then
α + β = p and α β = − ( p + q )
So, q
= − α − β − α β
Now the numerical value of
α 2 + 2 α + 1 α 2 + 2 α + q + β 2 + 2 β + 1 β 2 + 2 β +q
= α 2 + 2 α + 1 α 2 + 2 α − α − β − α β + β2+2 β + 1 β 2 + 2 β − α − β − α β
= α 2 + 2α + 1 α 2 + α − β − α β + β 2 + 2 β + 1 β 2 + β −α − α β
= ( α + 1 ) 2 α ( α + 1 ) − β ( α + 1 ) + ( β + 1 ) 2 β ( β + 1 ) − α ( 1 + β )
= ( α + 1 ) 2 ( α − β ) ( α + 1 ) − ( β + 1 ) 2 ( β + 1 ) ( α − β )
= α + 1 α − β − β + 1 α − β
= α + 1 − β − 1α −β
= 1
HOPE IT HELPS,
PLEASE THANK , FOLLOW AND MARK AS BRAINLIEST.