Math, asked by papafairy143, 24 days ago

if alpha and beta are the roots of the equation x^2+x-1=0, then find the value of ​

Attachments:

Answers

Answered by jitendra12iitg
3

Answer:

The correct answer is option (b) .

Step-by-step explanation:

Given \alpha,\beta are the roots of x^2+x-1=0

     \Rightarrow \alpha+\beta=-1,\alpha\beta=-1

Therefore

         \displaystyle \lim_{n\to \infty}\sum_{r=1}^n(\alpha^r+\beta^r)

       =(\alpha+\beta)+(\alpha^2+\beta^2)+(\alpha^3+\beta^3)+...\infty\\=(\alpha+\alpha^2+\alpha^3+...)+(\beta+\beta^2+\beta^3+....)\\\\=\dfrac{\alpha}{1-\alpha}+\dfrac{\beta}{1-\beta}=\dfrac{\alpha(1-\beta)+\beta(1-\alpha)}{(1-\alpha)(1-\beta)}\\\\=\dfrac{(\alpha+\beta)-2\alpha\beta}{1-(\alpha+\beta)+\alpha\beta}

Now substitute the values

       =\dfrac{-1-2(-1)}{1-(-1)-1}=\dfrac{-1+2}{1+1-1}=1

Answered by mathdude500
8

Given Question :-

\rm \:  \alpha , \beta  \: are \: the \: roots \: of \:  {x}^{2} + x - 1 = 0 \: then \: the \: value \: of \:  \\

\rm \: \displaystyle\lim_{n \to  \infty }\sum_{r=1}^n\rm ( { \alpha }^{r}  +  { \beta }^{r})  \: is \: \\

(a) 0

(b) 1

(c) 2

(d) 3

\large\underline{\sf{Solution-}}

Given that,

\rm \:  \alpha , \beta  \: are \: the \: roots \: of \:  {x}^{2} + x - 1 = 0 \\

We know,

\boxed{{\sf Sum\ of\ the\ roots=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}} \\

and

\boxed{{\sf Product\ of\ the\ roots=\frac{Constant}{coefficient\ of\ x^{2}}}} \\

So, using these results, we get

\rm\implies \: \alpha  +  \beta  = \dfrac{ - 1}{1} =  - 1 \\

and

\rm\implies \: \alpha \beta  = \dfrac{ - 1}{1} =  - 1 \\

Now, Consider

\rm \: \displaystyle\lim_{n \to  \infty }\sum_{r=1}^n\rm ( { \alpha }^{r}  +  { \beta }^{r}) \\

can be rewritten as

\rm \: =  \: ( \alpha  +  \beta ) + ( { \alpha }^{2}  +  { \beta }^{2}) + ( { \alpha }^{3} +  { \beta }^{3}) +  -  -  -  \infty  \\

\rm \: =  \: ( \alpha  +  { \alpha }^{2} +  { \alpha }^{3} +  -  -  -  \infty ) + ( \beta  +  { \beta }^{2} +  { \beta }^{3} +  -  -  -  \infty ) \\

It forms an infinite GP series.

So, using sum of infinite GP series, we get

\rm \: =  \: \dfrac{ \alpha }{1 -  \alpha }  + \dfrac{ \beta }{1 -  \beta }  \\

\rm \: =  \: \dfrac{ \alpha(1 -  \beta ) +  \beta (1 -  \alpha ) }{(1 -  \alpha)(1 -  \beta ) }   \\

\rm \: =  \: \dfrac{ \alpha  -  \alpha  \beta  +  \beta  -  \alpha  \beta }{1 -  \alpha  -  \beta  +  \alpha  \beta }  \\

\rm \: =  \: \dfrac{ \alpha  +  \beta  - 2 \alpha  \beta }{1 - ( \alpha  +  \beta)  +  \alpha  \beta }  \\

\rm \:  =  \: \dfrac{ - 1 - 2( - 1)}{1 - ( - 1) - 1} \\

\rm \:  =  \: \dfrac{ - 1 +  2}{1} \\

\rm \:  =  \:1 \\

Hence,

\rm\implies \: \boxed{\sf{  \:\:  \: \rm \: \displaystyle\lim_{n \to  \infty }\sum_{r=1}^n\rm ( { \alpha }^{r}  +  { \beta }^{r})  = 1 \:  \:  \: }}\\

Thus, option (b) is correct.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Formulae Used :-

Sum of infinite GP series having first term a and common ratio r, is given by

\boxed{\sf{  \:\rm \: S_ \infty  =  \frac{a}{1 - r}, \: provided \: that \:  |r|  < 1 \: }} \\


BrainlyIAS: Awesome! ❣️
Similar questions