Math, asked by nishassapra, 17 days ago

if alpha and beta are the roots of the equation (x^2+x-4=0) from the Quadratic Equation whose roots are alpha square and beta square (please reply fast please) ​

Answers

Answered by Anonymous
30

Given, α and β are roots of Quadratic equation x² +x -4 =0

Required to find : Quadratic equation whose roots are α²,β²

ㅤㅤㅤㅤㅤㅤㅤ______________..

We know that, In a Quadratic equation sum of roots and Product of roots is given by

  \:  \:  \: \boxed{ \mathfrak{ \alpha  +  \beta  =  \frac{ - b}{a} }}

 \:  \: \boxed{ \mathfrak{ \alpha    \beta  =  \frac{ c}{a} }}

x² + x -4 =0 Comparing with ax² + bx+ c = 0

a = 1 , b = 1 , c = -4

 \dashrightarrow \:  \sf \:  \alpha  +  \beta  =  \dfrac{ - 1}{1}

 \dashrightarrow \:  \sf \:  \alpha   \beta  =  \dfrac{ 4}{1}

Now, We need the Quadratic equation whose roots are α²,β²

 \:  \:  \:  \: \:  \:  \:  \sf  \underline{x {}^{2} - ( \alpha  +  \beta )x +  \alpha  \beta  }

α = α² , β= β²

 \:  \:  \:  \:\:  \sf  \underline{ \pink{x {}^{2} - ( \alpha {}^{2}   +  \beta {}^{2}  )x +  \alpha {}^{2}   \beta {}^{2}   }}

\dashrightarrow \: \:  \:\:  \:  \:  \:  \:   \: \:  \:  \:  \:  \:    \sf \: ( \alpha  +  \beta ) {}^{2}  =  (- 1) {}^{2}

 \:  \:  \: \:  \:  \:\:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \dashrightarrow \:  \sf \:  \alpha  {}^{2} +  \beta  {}^{2}  + 2 \alpha  \beta   =  1

 \:  \:  \: \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \dashrightarrow \:  \sf \:  \alpha  {}^{2} +  \beta  {}^{2}  + 2(4)   =  1

 \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \dashrightarrow \:  \sf \:  \alpha  {}^{2} +  \beta  {}^{2}    =  1 - 8

 \:  \:  \:  \: \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \dashrightarrow \:  \sf \:   \boxed{ \pink{\alpha  {}^{2} +  \beta  {}^{2}    =   - 7}}

    \dashrightarrow \:  \sf \: ( \alpha  {}^{2}  \beta  {}^{2} )  = ( \alpha  \beta ) {}^{2}

 \:  \:  \:  \: \:  \:  \:\:  \:  \:  \:  \:    \dashrightarrow \:  \sf \: ( \alpha  {}^{2}  \beta  {}^{2} )  = ( 4) {}^{2}

 \:  \:  \:  \:  \:  \:  \dashrightarrow \:  \sf \:  \boxed{ \pink{( \alpha  {}^{2}  \beta  {}^{2} )  =  16}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf  \underline{ \pink{x {}^{2} - ( \alpha {}^{2}   +  \beta {}^{2}  )x +  \alpha {}^{2}   \beta {}^{2}   }}

 \:  \:  \: \:  \:  \:  \:  \:   \sf \: x {}^{2}  - ( - 7)x \:  + 16

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf \: x {}^{2}   + 7x\:  + 16

 \:  \:  \:  \sf \: \underline{The \: required \: quadratic \: eq {}^{n} \: whose \: roots \: are \: square \: of \: other \: is \: x {}^{2}   + 7x + 16}

Similar questions