Math, asked by stuthiishana1708, 7 months ago

If alpha and beta are the roots of the equation x minus A into x minus b + c equal to zero then the roots of the equation x minus Alpha into x minus beta equal to c are

Answers

Answered by MaheswariS
5

\textbf{Given:}

\text{$\alpha$ and $\beta$ are roots of $(x-a)(x-b)+c=0$}

\textbf{To find:}

\text{The roots of the equation $(x-\alpha)(x-\beta)=c$}

\textbf{Solution:}

\text{Consider,}

(x-a)(x-b)+c=0

x^2-(a+b)x+(ab+c)=0

\text{Then,}

\alpha+\beta=\dfrac{a+b}{1}

\implies\bf\alpha+\beta=a+b

\alpha\beta=\dfrac{ab+c}{1}

\implies\bf\alpha\beta=ab+c

\text{Now,}

(x-\alpha)(x-\beta)=c

x^2-(\alpha+\beta)x+\alpha\beta=c

x^2-(a+b)x+ab+c=c

x^2-(a+b)x+ab=0

x(x-a)-b(x-a)=0

(x-a)(x-b)=0

\implies\bf\,x=a,\;b

\textbf{Answer:}

\textbf{The roots of $(x-\alpha)(x-\beta)=c$ are $\bf\,a$ and $\bf\,b$}

\textbf{Find more:}

1)If alpha and beta are zeroes of quadratic polynomial x2 -(k+6x)+2(2k-1) 

find k if alpha +beta=1/2alpha beta 

2)If alpha and beta are zeroes of x2-6x+a, find the value of a if 3alpha+2beta=20

https://brainly.in/question/16419985

If α and β are the zeroes of the polynomial

xsquare+ x – 1, the evaluate α + β + αβ

https://brainly.in/question/17511372

Similar questions