Math, asked by tomarparkhi7, 2 months ago

if alpha and beta are the roots of the polynomial ax^2+bx+c, then find the value of alpha^2+beta^2​

Answers

Answered by mathdude500
1

\large\underline{\sf{Solution-}}

\red{\rm :\longmapsto\: \alpha , \beta  \: are \: roots \: of \: a {x}^{2} +  bx + c}

We know that,

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\bf\implies \: \alpha +   \beta  =  \:  -  \: \dfrac{b}{a}

And

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\bf\implies \: \alpha  \beta  = \dfrac{c}{a}

Now, Consider,

\red{\rm :\longmapsto\: { \alpha }^{2}  +  { \beta }^{2}}

can be rewritten as

\rm \:  =  \:  \:  { \alpha }^{2} +  { \beta }^{2}  + 2 \alpha  \beta  - 2 \alpha  \beta

\rm \:  =  \:  \:  ({ \alpha }^{2} +  { \beta }^{2}  + 2 \alpha  \beta)  - 2 \alpha  \beta

\rm \:  =  \:  \:  {( \alpha  +  \beta )}^{2}  - 2 \alpha  \beta

\rm \:  =  \:  \:  {\bigg( - \dfrac{b}{a} \bigg) }^{2}  - 2 \times \dfrac{c}{a}

\rm \:  =  \:  \: \dfrac{ {b}^{2} }{ {a}^{2} }  - \dfrac{2c}{a}

\rm \:  =  \:  \: \dfrac{ {b}^{2}  - 2ac}{ {a}^{2} }

Additional Information :-

\red{\rm :\longmapsto\: \alpha , \beta , \gamma  \: are \: zeroes \: of \: a {x}^{3}  + b {x}^{2} +  cx + d, \: then}

\boxed{ \bf{ \:  \alpha  +  \beta  +  \gamma  =  - \dfrac{b}{a}}}

\boxed{ \bf{ \:  \alpha \beta   +  \beta \gamma   +  \gamma \alpha   = \dfrac{c}{a}}}

\boxed{ \bf{ \:  \alpha  \beta  \gamma  =  - \dfrac{d}{a}}}

Some useful Identities :-

\boxed{ \rm{  {x}^{2} +  {y}^{2}  =  {(x + y)}^{2} - 2xy}}

\boxed{ \rm{  {x}^{3} +  {y}^{3}  =  {(x + y)}^{3} - 3xy(x + y)}}

\boxed{ \rm{  {(x - y)}^{2} =  {(x + y)}^{2}  - 4xy}}

Similar questions