If alpha and beta are the roots of the quadratic equation x^2 - p(x + 1) - c = 0, then (alpha + 1) (beta +1)
Answers
Answered by
40
- p(x) = x² -p(x+1)-c
- α and β are the roots of the given quadratic equation.
- value of (α + 1) (β + 1)
So, p(x) = x² - px -(p+c)
where,
- a = 1
- b = -p
- c = -(p+c)
Now, finding value of (α + 1)(β + 1)
So, Value of (α + 1)(β + 1) = 1 - c
Answered by
20
Given quadratic equation x² - p(x+1) - c = 0
⇒ x² - px - p - c = 0
⇒ x² - px - ( p + c ) = 0
Now compare given equation x² - px - ( p + c ) = 0 with ax²+bx+c=0 , we get ,
- a = 1 , b = - p , c = - ( p + c )
Sum of roots , α + β = -b/a
⇒ α + β = -(-p)/1
⇒ α + β = p __ (1)
Product of roots , αβ = c/a
⇒ αβ = - (p+c)/1
⇒ αβ = - (p+c) __ (2)
Let's come to our required ,
⇒ (α+1)(β+1)
⇒ α (β+1) + (β+1)
⇒ αβ + α + β + 1
⇒ (αβ) + (α+β) + 1
⇒ - (p+c) + (p) + 1 [ From (1) & (2) ]
⇒ 1 - c
So the value of (α+1)(β+1) is (1-c)
Similar questions
Science,
5 months ago
Physics,
5 months ago
Physics,
5 months ago
English,
10 months ago
Computer Science,
10 months ago