Math, asked by Kruthi5224, 10 months ago

If alpha and beta are the roots of the quadratic equation x^2 - p(x + 1) - c = 0, then (alpha + 1) (beta +1)

Answers

Answered by Anonymous
40

 \large\bf\underline{Given:-}

  • p(x) = x² -p(x+1)-c
  • α and β are the roots of the given quadratic equation.

 \large\bf\underline {To \: find:-}

  • value of (α + 1) (β + 1)

 \huge\bf\underline{Solution:-}

 \dashrightarrow \rm \:  {x}^{2}  - p(x + 1) - c \\  \\  \dashrightarrow \rm {x}^{2}  - px - p - c \\  \\  \dashrightarrow \rm {x}^{2}  - px - (p + c)

So, p(x) = x² - px -(p+c)

where,

  • a = 1
  • b = -p
  • c = -(p+c)

 \longrightarrow \bf \bigstar \:  \: \alpha  +  \beta  =  \frac{ - b}{a}  \\  \\ \longrightarrow \rm \alpha  +  \beta  =  \frac{ - ( - p)}{1}  \\  \\ \longrightarrow \rm \alpha  +  \beta  = p.........(i)

\longrightarrow  \bigstar \: \bf\alpha  \beta  =  \frac{c}{a}  \\  \\ \longrightarrow \rm \alpha  \beta  =  \frac{ - (p + c)}{1}  \\  \\ \longrightarrow \rm \alpha  \beta  =  - (p + c).......(ii)

Now, finding value of (α + 1)(β + 1)

 :  \implies \rm \: ( \alpha  + 1)( \beta  + 1) \\  \\ :  \implies \rm \:  \alpha ( \beta  + 1) + 1( \beta  + 1) \\  \\ :  \implies \rm \:  \alpha  \beta  +  \alpha  +  \beta  + 1 \\  \\ :  \implies \rm \: ( \alpha  +  \beta ) + ( \alpha  \beta ) + 1 \\  \\  \dag \: \rm \: substituting \: value \: of \:  (\alpha  +  \beta ) \: \\  \rm \:  \:  \:  \:  and \:  \alpha  \beta  \: from \: eq.(i) \: and \: (ii). \\  \\ :  \implies \rm \: ( \alpha  +  \beta ) + ( \alpha  \beta ) + 1 \\  \\  :  \implies \rm \:p +  \{ - (p + c) \} + 1 \\  \\  :  \implies \rm \: \cancel{p} - \cancel{ p} - c + 1 \\  \\  :  \implies \rm \:1 - c

So, Value of (α + 1)(β + 1) = 1 - c

Answered by BrainlyIAS
20

Given quadratic equation x² - p(x+1) - c = 0

⇒ x² - px - p - c = 0

⇒ x² - px - ( p + c ) = 0

Now compare given equation x² - px - ( p + c ) = 0 with ax²+bx+c=0 , we get ,

  • a = 1 , b = - p , c = - ( p + c )

Sum of roots , α + β = -b/a

⇒ α + β = -(-p)/1

⇒ α + β =  p __ (1)

Product of roots , αβ = c/a

⇒ αβ = - (p+c)/1

⇒ αβ = - (p+c) __ (2)

Let's come to our required ,

⇒ (α+1)(β+1)

⇒ α (β+1) + (β+1)

⇒ αβ + α + β + 1

⇒ (αβ) + (α+β) + 1

⇒ - (p+c) + (p) + 1 [ From (1) & (2) ]

⇒ 1 - c

So the value of (α+1)(β+1) is (1-c)

Similar questions