Math, asked by nandirohit5, 10 months ago

If alpha and beta are the roots of x square - 2 X + 5 equal to zero find the value of Alpha by beta + beta by Alpha

Answers

Answered by Anonymous
11

Given:

α and β are the zeroes of the polynomial x² - 2x + 5.

  • a = 1

  • b = -2

  • c = 5

To find out:

Find the value of α/β + β/α ?

Solution:

★Sum of zeroes:

α + β = -b/a

⇒ - ( - 2) / 1

⇒ 2

★Product of zeroes:

αβ = c/a

⇒ 5/1

⇒5

Now,

α/β + β/α [ Given ]

⇒ α² + β² /αβ

We know that,

α² + β² = ( α + β )² - 2αβ

⇒ ( α + β )² - 2αβ / αβ

☆Putting the values, we get

⇒ ( 2 )² - 2 × 5 / 5

⇒ 4 - 10/5

⇒ -6 / 5

Thus ,the value of α/β + β/α is -6/5 .

Answered by BrainlyPopularman
54

GIVEN :

A quadratic equation have two roots   \:  \: \sf \alpha  \:  \: and \:  \beta \:  \:

TO FIND :

  \\  \:  \: \sf   \dfrac{ \alpha }{ \beta }  +  \dfrac{ \beta }{ \alpha }  =  ?

SOLUTION :

  \\   \sf \implies   {x}^{2}  - 2x + 5 =0

  \\   \sf \longrightarrow  \:  \: sum \:  \: of \:  \: roots  =   - \dfrac{coffieciant \:  \: of \:  \: x}{coffieciant \:  \: of \:  \:  {x}^{2} }

  \\   \sf \implies  \:  \: \alpha  +  \beta   =   - \dfrac{(  - 2)}{1}

  \\   \sf \implies  \:  \: \alpha  +  \beta   =   2  \:  \:  \:  -  -  - eq.(1)

  \\   \sf \longrightarrow  \:  \: product  \:  \: of \:  \: roots  =    \dfrac{constant \:  \: term}{coffieciant \:  \: of \:  \:  {x}^{2} }

  \\   \sf \implies  \:  \: \alpha   \beta   =    \dfrac{5}{1}

  \\   \sf \implies  \:  \: \alpha    \beta   =  5 \:  \:  \:  -  -  - eq.(2)

• Now Let's find –

  \\  \:  \: \sf =    \dfrac{ \alpha }{ \beta }  +  \dfrac{ \beta }{ \alpha }

  \\  \:  \: \sf =    \dfrac{ \alpha {}^{2} +  { \beta }^{2}   }{  \alpha \beta }

  \\  \:  \: \sf =    \dfrac{  {( \alpha  +  \beta )}^{2}  - 2 \alpha  \beta   }{  \alpha \beta }    \:  \:  \:  \:  \:  \:  \:[  \:  \because \: {(a + b)}^{2} =  {a}^{2}  +  {b}^{2}  + 2ab ]

• Now using eq.(1) and eq.(2) –

  \\  \:  \: \sf =    \dfrac{  {(2 )}^{2}  - 2 (5)   }{5 }

  \\  \:  \: \sf =    \dfrac{  4 - 10   }{5 }

  \\  \:  \: \sf =     - \dfrac{  6  }{5 }

• Hence ,   \:  \: \sf   \dfrac{ \alpha }{ \beta }  +  \dfrac{ \beta }{ \alpha }  =   -  \dfrac{6}{5}

Similar questions