Math, asked by first4stepsteam, 4 months ago

if alpha and beta are the roots of x square + 5 x minus 1 is equals to zero then find alpha + beta the whole square​

Answers

Answered by Anonymous
3

GIVEN :-

  • and are the roots of x² + 5x - 1.

 \\

TO FIND :-

  • (α+β)²

 \\

TO KNOW :-

★ Quadratic Formula ,

 \\  \boxed{ \sf \: roots =  \dfrac{ - b± \sqrt{ {b}^{2}  - 4ac} }{2a} } \\

Here ,

  • a → Coefficient of x²
  • b → Coefficient of x
  • c → Constant

 \\

SOLUTION :-

Solving the polynomial x² + 5x - 1 by Quadratic Formula.

  • a = 1
  • b = 5
  • c = -1

 \\  \sf \: roots =  \dfrac{ - 5± \sqrt{ {(  5)}^{2} - 4(1)( - 1) } }{2(1)}  \\  \\  \\  \sf \: roots =  \dfrac{ - 5± \sqrt{25 + 4} }{2}   \\  \\  \\ \sf \: roots  = \frac{ - 5± \sqrt{29} }{2} \\  \\  \\  \boxed{ \sf \:   roots = \frac{ - 5 +  \sqrt{29} }{2}  ,  \frac{ - 5 -  \sqrt{29} }{2}}  \\ \\

Let α be (-5+29)/2 and β be (-5-29)/2.

♦ α+β = (- 5 + √29)/2 + (- 5 - √29)/2

ㅤㅤㅤ= (- 5 + √29 - 5 - √29)/2

ㅤㅤㅤ= -10/2

ㅤㅤㅤ= -5

 \\

So , we have ,

♠ α+β = -5

Squaring both sides , we get..

→ (α+β)² = (-5)²

(α+β)² = 25

 \\   \star\underbrace{\boxed{  \sf \: ( \alpha  +  { \beta )}^{2} = 25 }}

Similar questions