If alpha and beta are the roots of x square + 5x - 1 = 0 then find
1. Alpha cube + beta cube
2. Alpha square + beta Square
Answers
Answered by
12
heya
________________________
Alfa³ + Beat³ = ( Alfa + Beta )³ - 3 Alfa × Beta ( Alfa + Beta )
Alfa + Beta = -5
Alfa × Beta = -1
=>
Alfa³ + Beta³ = ( -5)³ -3 ( -1 ) ( -5 )
=>
Alfa ³ + Beta³ = -125- 15
=>
Alfa³ + Beta³ = 140
2)
Alfa² + Beta² = ( Alfa + Beta )² - 2Alfa × Beta
=>
Alfa² + Beta² = 25 +2
=>
Alfa² + Beta² = 27
________________________
Alfa³ + Beat³ = ( Alfa + Beta )³ - 3 Alfa × Beta ( Alfa + Beta )
Alfa + Beta = -5
Alfa × Beta = -1
=>
Alfa³ + Beta³ = ( -5)³ -3 ( -1 ) ( -5 )
=>
Alfa ³ + Beta³ = -125- 15
=>
Alfa³ + Beta³ = 140
2)
Alfa² + Beta² = ( Alfa + Beta )² - 2Alfa × Beta
=>
Alfa² + Beta² = 25 +2
=>
Alfa² + Beta² = 27
Anonymous:
Fantastic
Answered by
9
Heya
_______________________________
ax² + bx + c = 0
Alfa + Beta = -b/a
And
Alfa × Beta = c/a
_______________________________
In given question
Alfa + Beta = -5
And
Alfa × Beta = -1
=>
Alfa³ + Beta³ = ( Alfa + Beta )³ - 3 Alfa × Beta ( Alfa + Beta )
=>
Alfa³ + Beta³ = ( -5 )³ - 3 ( -1 ) ( -5 )
=>
Alfa³ + Beta³ = -125 - 15
=>
Alfa³ + Beta³ = -140
2)
Alfa² + Beta² = ( Alfa + Beta )² - 2 Alfa × Beta
=>
Alfa² + Beta² = 25 + 2
=>
Alfa² + Beta² = 27
_______________________________
ax² + bx + c = 0
Alfa + Beta = -b/a
And
Alfa × Beta = c/a
_______________________________
In given question
Alfa + Beta = -5
And
Alfa × Beta = -1
=>
Alfa³ + Beta³ = ( Alfa + Beta )³ - 3 Alfa × Beta ( Alfa + Beta )
=>
Alfa³ + Beta³ = ( -5 )³ - 3 ( -1 ) ( -5 )
=>
Alfa³ + Beta³ = -125 - 15
=>
Alfa³ + Beta³ = -140
2)
Alfa² + Beta² = ( Alfa + Beta )² - 2 Alfa × Beta
=>
Alfa² + Beta² = 25 + 2
=>
Alfa² + Beta² = 27
Similar questions