Math, asked by nishygeorge, 8 months ago

If alpha and beta are the roots of x2-3x+1=0 then equation with roots alpha +1/beta and beta +1/alpha

Answers

Answered by manishakukrejagwl
0

Answer:

x2+3x+1

Step-by-step explanation:

let alpha be a and beta be b

a+b =-3

ab=1

a=1/b

b=1/a

sum =1/a+1/b=3/1

product =1/a×1/b=1/1

x2+3x+1

Answered by jitumahi435
2

We need to recall the following rules for the roots of the quadratic equation.

If \alpha ,\beta are the roots of a quadratic equation ax^{2} +bx+c=0 , then

  • \alpha +\beta =\frac{-b}{a}
  • \alpha \beta =\frac{c}{a}

This problem is about the roots of the quadratic equation.

Given:

x^{2}-3x+1=0

\alpha ,\beta are the roots of the equation.

Then,

Sum of roots: \alpha +\beta =-\frac{-3}{1}=3                  .......(1)

Product of roots: \alpha \beta =\frac{1}{1}=1                      .......(2)

\alpha =\frac{1}{\beta }  or  \beta =\frac{1}{\alpha }                                      .......(3)

Thus, the sum of the roots of the required quadratic equation having roots \alpha +\frac{1}{\beta } and \beta +\frac{1}{\alpha }  is,

\alpha +\frac{1}{\beta }+\beta +\frac{1}{\alpha }

=\alpha +\alpha +\beta +\beta                     .......From equation (3)

=2\alpha +2\beta

=2(\alpha +\beta )

=2(3)                                     .......From equation (1)

=6                                               .......(4)

The product of the roots of the required quadratic equation having roots \alpha +\frac{1}{\beta } and \beta +\frac{1}{\alpha }  is,

(\alpha +\frac{1}{\beta })*(\beta +\frac{1}{\alpha })

=(\alpha +\alpha)* (\beta +\beta)                     .......From equation (3)

=2\alpha *2\beta

=4\alpha\beta

=4(1)                                          .......From equation (1)

=4                                                     .......(5)

Hence, the required quadratic equation is,

x^{2} - sum of roots(x)+ product of roots=0

From equations (4) and (5) , we get

x^{2} -6x+4=0

Similar questions