Math, asked by ak474728, 1 year ago

If alpha and beta are the roots of x² = x + 1 then the value of alpha²/beta - beta²/alpha​

Answers

Answered by aaditya11167
34

Answer:

x^2 = x + 1

=> x^2 - x - 1 = 0

As it is given that the roots of this equation are α, β, we can, by the use of the sum and product of roots formulae, say that,

α + β = -(-1)/1 = 1

αβ = -1

Now, we are asked to find the value of

α^2/β - β^2/α.

= (α^3 - β^3) / αβ

= (α - β)(α^2 + αβ + β^2) / -1

= -√[(α + β)^2 - 4αβ] [(α + β)^2 - αβ]

= -√[1 - 4(-1)] (1 - (-1))

= -2√5

Answered by Aditiiiiiiiiiii
24

Answer:

-2√5

Step-by-step explanation:

.....................

Attachments:
Similar questions