If alpha and beta are the serious of the quadratic polynomials f(x) = kx^2+4x+4 such that alpha^2+beta^2=24 find the alpha^2-beta^2
Answers
Answered by
1
Answer:
solved
Step-by-step explanation:
kx^2+4x+4 = 0
kx²+4x+4 = 0
x²+4x/k+4/k = 0
∝+β = - 4/k
∝β = 4/k
∝² + β² = (∝+β)² -2∝β = 16/k² - 8/k =24
16-8k = 24k²
2-k = 3k²
3k²+k-2 = 0
3k²+k/3-2/3 = 0
k = (1±5)/6 = 1 , - 2/3
N = ∝²- β² = (∝+β)(∝-β) = -4/k(∝-b) = (-4/k )√{ (∝+b)² -4∝β}
N = (-4/k )√{ 16/k² - 16/k} = (-16/k²) √ (1+k)
1st case : N = -16√2
2nd. case : N = -16/√3 ÷ 4/3 = - 4/3√3 = - 4√3/9
Similar questions