Math, asked by deon6937, 1 year ago

if alpha and beta are the two solutions of the equation atanx+bsecx=c, then find the values of cos(alpha+beta) and sin (alpha+beta).

Answers

Answered by boffeemadrid
47

Answer:


Step-by-step explanation:

The given equation is:

atanx+bsecx=c

bsecx=c-atanx

Squaring on both the sides,

b^{2}sec^{2}x=(c-atanx)^{2}

b^{2}sec^{2}x=c^{2}+a^{2}tan^{2}x-2actanx

b^{2}(1+tan^{2}x)=c^{2}+a^{2}tan^{2}x-2actanx

(b^{2}-a^{2})tan^{2}x+2actanx+b^{2}-c^{2}=0

Since, α and β are the roots of this equation, therefore

tanα+tanβ=\frac{-2ac}{b^{2}-c^{2}} and

tanαtanβ=\frac{b^{2}-c^{2}}{b^{2}-a^{2}}

Now, tan(α+β)=\frac{tan{\alpha}+tan{\beta}}{1-tan{\alpha}tan{\beta}}

=\frac{\frac{-2ac}{b^{2}-a^{2}}}{1-\frac{b^{2}-c^{2}}{b^{2}-a^{2}}}

=\frac{2ac}{a^{2}-c^{2}}

Then, from figure we get hypotenuse= a+c by using Pythagoras theorem

Sin(α+β)=\frac{2ac}{a+c}

cos(α+β)=\frac{a^{2}-c^{2}}{a+c}

Attachments:
Similar questions