if alpha and beta are the two zeros of the quadratic polynomial f(x) = x square-p x+q, Then Find the value of alpha square+beta Square
Attachments:
Answers
Answered by
2
Heya !!!
F(X) = X² - PX + Q
sum of zeroes = -B/A
Alpha + Beta = -(-P)/1
Alpha + Beta = P -------(1)
And,
Product of zeroes = C/A
Alpha × Beta = Q --------(2)
--------------------------------------------------
( Alpha)² + (Beta)²
=> ( Alpha + Beta )² - 2Alpha Beta
=> (P)² - 2 × Q
=> -2Q + P²
★ HOPE IT WILL HELP YOU ★
F(X) = X² - PX + Q
sum of zeroes = -B/A
Alpha + Beta = -(-P)/1
Alpha + Beta = P -------(1)
And,
Product of zeroes = C/A
Alpha × Beta = Q --------(2)
--------------------------------------------------
( Alpha)² + (Beta)²
=> ( Alpha + Beta )² - 2Alpha Beta
=> (P)² - 2 × Q
=> -2Q + P²
★ HOPE IT WILL HELP YOU ★
VijayaLaxmiMehra1:
:-)
Answered by
2
Hey!!
_______________
p (x) = x^2 - px + q
( This is in the form of ax^2 - bx + c)
Sum of zeroes = -b/a
alpha + beta = - ( - p)/1
alpha + beta = p----------------(i)
Product of zeroes = c/a
alpha × beta = c/a
alpha × beta = q----------------(ii)
_____________________________
(alpha)^2 + (beta)^2
(alpha + beta)^2 - 2 alphabeta
p^2 - 2q.
____________________
Hope it will helps you:-)
_______________
p (x) = x^2 - px + q
( This is in the form of ax^2 - bx + c)
Sum of zeroes = -b/a
alpha + beta = - ( - p)/1
alpha + beta = p----------------(i)
Product of zeroes = c/a
alpha × beta = c/a
alpha × beta = q----------------(ii)
_____________________________
(alpha)^2 + (beta)^2
(alpha + beta)^2 - 2 alphabeta
p^2 - 2q.
____________________
Hope it will helps you:-)
Similar questions