Math, asked by sathvika27072005, 10 months ago

if alpha and beta are the zeries of the polynomial f(x)=3x²-7x-6, find a polynomial whose zeroes are alpha square and beta square​

Answers

Answered by ItzAditt007
1

AnswEr:-

Your answer is 3x²-19x+12.

ExplanaTion:-

Given:-

  • \tt \alpha \:\:And\:\: \beta Are zeroes of \tt f(x) = 3x^2-7x-6.

To Find:-

  • The polynomial whose zeroes are \tt \alpha^2 \:\:And\:\: \beta^2.

Concepts Used:-

• Every quadratic polynomial is in the form,

\tt\longrightarrow  {x}^{2}  - (sum \: of \: zeroes)x + (product \: of \: zeroes).

In a quadratic polynomial if alpha and beta are zeroes then,

\tt\longrightarrow \alpha  +  \beta  =   - \dfrac{b}{a} . \\  \\ \rm \: and \\  \\ \tt\longrightarrow \alpha  \beta   =  \dfrac{c}{a} .

Where,

  • a = Coefficient of x².
  • b = Coefficient of x.
  • c = Constant Term.

ID Used:-

\tt\longrightarrow { a}^{2}  +  {b}^{2}  =   {(a + b)}^{2} - 2ab.

So Here,

\tt\longrightarrow \alpha  +  \beta  =   - \dfrac{( - 7)}{3} . \\  \\\tt\longrightarrow \alpha  +  \beta  =  \dfrac{7}{3}. ..(1)\\  \\ \rm \: and   \\  \\ \tt\longrightarrow \alpha  \beta  =  \cancel \dfrac{ - 6}{3}  \\  \\ \tt\longrightarrow \alpha  \beta  =  - 2. ..(2)

Therefore,

\tt\mapsto { \alpha }^{2} +  { \beta }^{2}   = ( \alpha  +  \beta ) {}^{2}  - 2 \alpha  \beta . \\  \\ \tt\mapsto { \alpha }^{2}  +  { \beta }^{2}  = ( \dfrac{7}{3} ) {}^{2}  - 2( - 2). \\  \\ \rm[from \: (1) \: and \: (2)]. \\  \\ \tt\mapsto { \alpha }^{2}  +  { \beta }^{2}  =  \dfrac{7}{3}  + 4. \\  \\ \tt\mapsto { \alpha }^{2}  +   \beta  {}^{2}  =  \dfrac{19}{3} ...(3) \\  \\ \rm [by \: taking \: lcm].

Similarly,

\tt\mapsto { \alpha }^{2}  { \beta }^{2}  = ( \alpha  \beta ) {}^{2}.  \\  \\ \tt\mapsto { \alpha }^{2}  \beta  {}^{2}  =  ( - 2) {}^{2}  \\  \\ \tt\mapsto { \alpha }^{2}  { \beta }^{2}  = 4...(4)

So the sum of product of the zeroes of polynomial having zereos alpha² and beta² is 19/3 and 4 respectively.

So the required polynomial is:-

\tt\leadsto {x}^{2}  - ( { \alpha }^{2}  +  { \beta }^{2} )x + ( \alpha  {}^{2}  \beta  {}^{2}). \\  \\  \tt =  {x}^{2}  - ( \dfrac{19}{3} )x + (4). \\  \\ \tt[from \:  \: (3) \:  \: and \:  \: (4)]. \\  \\ \tt  =   {x}^{2}  -  \dfrac{19}{3}x  + 4 \\  \\ \tt = 3 {x}^{2}  - 19x + 12.

Therefore the required polynomial is 3x²-19x+12.

\rule{200}2

Now you may have a doubt why the polynomial is,

\tt\rightarrow 3x^2-19x+12 \:and\:not, \\ \\ \dfrac{3x^2-19x+12}{3}

This is because when we will find out the zeroes of this polynomial it must be equal to zero and than it will solve like,

\tt\rightarrow \dfrac{3x^2-19x+12}{3}=0. \\ \\ \tt\rightarrow 3x^2-19x+12 = 0\times3.\\ \\ \tt\rightarrow 3x^2-19x+12 = 0.

That is why we had directly written it as \tt 3x^2-19x+12 Instead of \tt\dfrac{3x^2-19x+12}{3}.

\rule{200}2

Similar questions