Math, asked by nirui, 1 year ago

if alpha and beta are the zero of the polynomial f(x)=x2-2x+5 then find the quadratic polynomial whose zeroes are 1/alpha+1/beta and alpha+beta​

Answers

Answered by rekhajangra520
2

Answer:

this is the answer to your question

Attachments:
Answered by lublana
2

5x^2-12x+4=0

Step-by-step explanation:

f(x)=x^2-2x+5

x=\frac{2\pm\sqrt{(-2)^2-4(1)(5)}}{2}

By using the quadratic  formula :x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}

Where a=Coefficient of x square

b=Coefficient of x

c=Constant term

x=\frac{2\pm 4i}{2}=2(\frac{1\pm 2i}{2})=1\pm 2i

Let \alpha=1+2i,\beta=1-2i

Suppose, p=\frac{1}{\alpha}+\frac{1}{\beta}=\frac{1}{1+2i}+\frac{1}{1-2i}=\frac{1-2i+1+2i}{(1+2i)(1-2i)}

p=\frac{2}{(1)^2-(2i)^2}=\frac{2}{1+4}=\frac{2}{5}

Using identity:(a+b)(a-b)=a^2-b^2

i^2=-1

q=\alpha+\beta=1+2i+1-2i=2

General equation of quadratic polynomial

x^2-(sum\;of\;zeroes)x+product\;of\;zeroes

Using the formula

x^2-(\frac{2}{5}+2)x+\frac{2}{5}\times 2

x^2-\frac{2+10}{5}x+\frac{4}{5}

\frac{5x^2-12x+4}{5}=0

5x^2-12x+4=0

#Learns more:

https://brainly.in/question/5946132

Similar questions