Math, asked by answerking2, 1 year ago

if alpha and beta are the zeroes of 3x2-6x+4 . find the value of (alpha /beta+beta/alpha)+2(1/alpha+1/beta)+3alpha×beta

Answers

Answered by mysticd
304

Answer:

\left(\frac{\alpha}{\beta}+\frac{\beta}{\alpha}\right)+2\left(\frac{1}{\alpha}+\frac{1}{\beta}\right)+3\alpha\beta\\=8

Step-by-step explanation:

Given\: \alpha \:and\:\beta\\are\: zeroes\:of\:3x^{2}-6x+4

compare this with ax²+bx+c,we get

a = 3, b=-6, c=4,

i) Sum\:of \:the \: zeroes\\=\frac{-b}{a}\\=\frac{-(-6)}{3}\\=\frac{6}{3}\\\alpha+\beta=2 --(1)

ii) Product\:of\:the\: zeroes\\=\frac{c}{a}\\=\\alpha\beta=\frac{4}{3}---(2)

 iii)\alpha^{2}+\beta^{2}\\=\left(\alpha+\beta\right)^{2}-2\alpha\beta\\=\left(2\right)^{2}-2\times \frac{4}{3}\\=4-\frac{8}{3}\\=\frac{12-8}{3}\\=\frac{4}{3}--(3)

Now,\\\left(\frac{\alpha}{\beta}+\frac{\beta}{\alpha}\right)+2\left(\frac{1}{\alpha}+\frac{1}{\beta}\right)+3\alpha\beta\\

=\left(\frac{\alpha^{2}+\beta^{2}}{\alpha\beta}\right)+2\left(\frac{\beta+\alpha}{\alpha\beta}\right)+3\alpha\beta\\=\left(\frac{\frac{4}{3}}{\frac{4}{3}}\right)+2\left(\frac{2}{\frac{4}{3}}\right)+3\times \frac{4}{3}

= 1+2\times \frac{3}{2}+4

=1+3+4\\=8

•••♪

Answered by swayambhuvmitra83
4

Answer:

(

β

α

+

α

β

)+2(

α

1

+

β

1

)+3αβ

=8

Step-by-step explanation:

\begin{gathered}Given\: \alpha \:and\:\beta\\are\: zeroes\:of\:3x^{2}-6x+4\end{gathered}

Givenαandβ

arezeroesof3x

2

−6x+4

compare this with ax²+bx+c,we get

a = 3, b=-6, c=4,

\begin{gathered}i) Sum\:of \:the \: zeroes\\=\frac{-b}{a}\\=\frac{-(-6)}{3}\\=\frac{6}{3}\\\alpha+\beta=2 --(1)\end{gathered}

i)Sumofthezeroes

=

a

−b

=

3

−(−6)

=

3

6

α+β=2−−(1)

\begin{gathered}ii) Product\:of\:the\: zeroes\\=\frac{c}{a}\\=\\alpha\beta=\frac{4}{3}---(2)\end{gathered}

ii)Productofthezeroes

=

a

c

=

alphaβ=

3

4

−−−(2)

\begin{gathered} iii)\alpha^{2}+\beta^{2}\\=\left(\alpha+\beta\right)^{2}-2\alpha\beta\\=\left(2\right)^{2}-2\times \frac{4}{3}\\=4-\frac{8}{3}\\=\frac{12-8}{3}\\=\frac{4}{3}--(3)\end{gathered}

iii)α

2

2

=(α+β)

2

−2αβ

=(2)

2

−2×

3

4

=4−

3

8

=

3

12−8

=

3

4

−−(3)

\begin{gathered}Now,\\\left(\frac{\alpha}{\beta}+\frac{\beta}{\alpha}\right)+2\left(\frac{1}{\alpha}+\frac{1}{\beta}\right)+3\alpha\beta\\\end{gathered}

Now,

(

β

α

+

α

β

)+2(

α

1

+

β

1

)+3αβ

\begin{gathered}=\left(\frac{\alpha^{2}+\beta^{2}}{\alpha\beta}\right)+2\left(\frac{\beta+\alpha}{\alpha\beta}\right)+3\alpha\beta\\=\left(\frac{\frac{4}{3}}{\frac{4}{3}}\right)+2\left(\frac{2}{\frac{4}{3}}\right)+3\times \frac{4}{3}\end{gathered}

=(

αβ

α

2

2

)+2(

αβ

β+α

)+3αβ

=(

3

4

3

4

)+2(

3

4

2

)+3×

3

4

= 1+2\times \frac{3}{2}+4=1+2×

2

3

+4

\begin{gathered}=1+3+4\\=8\end{gathered}

=1+3+4

=8

Similar questions