Math, asked by teju4740, 1 year ago

if alpha and beta are the zeroes of a polynomial x2-4√3x+3,then find the value of alpha +beta -alpha beta​

Answers

Answered by naachec
9

Answer:

answer is 4root3-3

Step-by-step explanation:


naachec: Good morning
naachec: Please chat with me
naachec: Plz
naachec: Hi
naachec: hey hi
naachec: how r u
naachec: good morning
naachec: plz chat with me
naachec: hi
naachec: why are not u chatting since yesterday
Answered by aquialaska
32

Answer:

The value of α + β - αβ is  4√3 - 3

Step-by-step explanation:

Given Quadratic polynomial : x² - 4√3x + 3  and α & β are zeroes of the given polynomial.

To find: α + β - αβ

First we solve the given polynomial to find zeroes.

x² - 4√3x + 3 = 0

using quadratic formula,

x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}

x=\frac{-(-4\sqrt{3})\pm\sqrt{(-4\sqrt{3})^2-4\times3}}{2}

x=\frac{4\sqrt{3}\pm\sqrt{48-12}}{2}

x=\frac{4\sqrt{3}\pm6}{2}

x=2\sqrt{3}\pm3

So, α = 2√3 + 3   and β = 2√3 - 3

also, αβ = ( 2√3 + 3 )( 2√3 - 3 ) = (2√3)² - (3)² = 12 - 9 = 3

Thus,

α + β - αβ = ( 2√3 + 3 ) + ( 2√3 - 3 ) - ( 3 ) = 4√3 - 3

Therefore, The value of α + β - αβ is  4√3 - 3

Similar questions